Skip to main content
×
Home
    • Aa
    • Aa

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic nastic structures

  • Luke Matthews (a1), Vishnu Baba Sundaresan (a2), Victor Giurgiutiu (a1) and Donald J. Leo (a2)
Abstract

Nastic structures are synthetic constructs capable of controllable deformation and shape change similar to plant motility, designed to imitate the biological process of nastic movement found in plants. This paper considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array of cylindrical microhydraulic actuators embedded in a polymeric plate. Non-uniform expansion/contraction of the actuators in the array may yield an overall shape change resulting in structural morphing. Actuator expansion/contraction is achieved through pressure changes produced by active transport across a bilayer membrane. The active transport process relies on ion-channel proteins that pump sucrose and water molecules across a plasma membrane against the pressure gradient. The energy required by this process is supplied by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active transport process, the paper presents an analysis of the microhydraulic actuator mechanics predicting the resulting displacement and output energy. Experimental demonstration of fluid transport through a protein transporter follows this discussion. The bilayer membrane is formed from 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine lipids to support the AtSUT4 H+-sucrose cotransporter.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: matthela@engr.sc.edu
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 54 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.