Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T11:32:42.127Z Has data issue: false hasContentIssue false

Blend-based fibers produced via centrifugal spinning and electrospinning processes: Physical and rheological properties

Published online by Cambridge University Press:  11 August 2020

Nathália O. Muniz*
Affiliation:
Laboratory of Biomaterials, Materials Engineering Department, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre/RS90650-001, Brazil Center for Biomedical Technology, Universidad Politécnica de Madrid (UPM), Campus Montegancedo, Pozuelo de Alarcón, Madrid28223, Spain
Fernanda A. Vechietti
Affiliation:
Laboratory of Biomaterials, Materials Engineering Department, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre/RS90650-001, Brazil Mechanics and Composite Materials Department, Leibniz-Institut für Polymerforschung, Dresden01069, Germany
Guilherme R. Anesi
Affiliation:
Laboratory of Biomaterials, Materials Engineering Department, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre/RS90650-001, Brazil
Gustavo V. Guinea
Affiliation:
Center for Biomedical Technology, Universidad Politécnica de Madrid (UPM), Campus Montegancedo, Pozuelo de Alarcón, Madrid28223, Spain
Luís Alberto L. dos Santos
Affiliation:
Laboratory of Biomaterials, Materials Engineering Department, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre/RS90650-001, Brazil
*
a)Address all correspondence to this author. e-mail: natclio@hotmail.com
Get access

Abstract

Cellprene™ is a recently developed polymeric blend based on poly(lactide-co-glycolide) (PLGA)/polyisoprene (PI) with good biological performance for biomedical applications. However, its potential as fiber scaffold in tissue engineering is still unknown, and the influence of processing parameters is yet to be understood. In this study, several compositions based on PLGA/PI blend mixed with hydroxyapatite (HAp) and polyethylene glycol (PEG) were prepared by solvent casting. Then, the membranes were used to produce micro/nanofibers by centrifugal spinning (CS) and electrospinning (ES). The viscosity's effect was studied to find an ideal viscosity value to produce homogeneous micro/nanofibers. The in vitro bioactivity test was also performed. Rheological results showed that the best viscosity range was (0.105 Pa s > η > 0.138 Pa s) for CS; larger fibers of ES were produced with lower viscosities. The sample with the lowest HAp concentration exhibited thinner and more homogeneous non-beaded fibers and proved its bioactivity response.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asti, A. and Gioglio, L.: Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 37, 187 (2014).Google ScholarPubMed
Wei, K., Li, Y., Kim, K.-O., Nakagawa, Y., Kim, B.-S., Abe, K., Chen, G.-Q., and Kim, I.-S.: Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J. Biomed. Mater. Res. A 97A, 272 (2011).CrossRefGoogle Scholar
Liuyun, J., Yubao, L., and Chengdong, X.: Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 16, 65 (2009).CrossRefGoogle ScholarPubMed
Prasad, T., Shabeena, E.A., Vinod, D., Kumary, T.V., and Anil Kumar, P.R.: Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J. Mater. Sci. Mater. Med. 26, 5352 (2015).CrossRefGoogle Scholar
Dong, C. and Lv, Y.: Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 8, 42 (2016).CrossRefGoogle ScholarPubMed
Xia, S.H., Teng, S.H., and Wang, P.: Synthesis of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration. Mater. Lett. 213, 181 (2018).CrossRefGoogle Scholar
Singh, B.N. and Pramanik, K.: Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Biofabrication 9, 015028 (2017).CrossRefGoogle ScholarPubMed
Abbasian, M., Massoumi, B., Mohammad-Rezaei, R., Samadian, H., and Jaymand, M.: Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 134, 673 (2019).CrossRefGoogle ScholarPubMed
Marques, D.R., dos Santos, L.A., Sousa, V.C., Sanches, P.R.S., and Macedo Neto, A.V.: Blendas Poliméricas de Poli (Ácido Láctico-co-Glicólico) e Poliisopreno. BR Patent registration number: 0000221010682444, 2011.Google Scholar
Universidade Federal do Rio Grande do Sul. Pedido de Registro de Marca de Produto (Nominativa). BR Patent registration number: 906982910, 2013.Google Scholar
Marques, D.R., dos Santos, L.A., Schopf, L.F., and de Fraga, J.C.S.: Analysis of poly(lactic-co-glycolic acid)/poly(isoprene) polymeric blend for application as biomaterial. Polímeros 2, 579 (2013).CrossRefGoogle Scholar
Mi, H.Y., Palumbo, S.M., Jing, X., Turng, L.-S., Li, W.-J., and Peng, X.-F.: Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. J. Biomed. Mater. Res. B Appl. Biomater. 102, 1434 (2014).CrossRefGoogle ScholarPubMed
Jeong, S.I., Ko, E.K., Yum, J., Jung, C.H., Lee, Y.M., and Shin, H.: Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol. Biosci. 8, 328 (2008).CrossRefGoogle ScholarPubMed
Heo, S.Y., Seol, J.W., and Kim, N.S.: Characterisation and assessment of electrospun poly/hydroxyapatite nanofibres together with a cell adhesive for bone repair applications. Vet Med 59, 498 (2014).CrossRefGoogle Scholar
Banerjee, D. and Bose, S.: Effects of polymer chemistry, concentration, and pH on doxorubicin release kinetics from hydroxyapatite-PCL-PLGA composite. J. Mater. Res. 34, 1692 (2019).CrossRefGoogle Scholar
Hou, T., Li, X., Lu, Y., and Yang, B.: Highly porous fibers prepared by centrifugal spinning. Mater. Des. 114, 303311 (2017).CrossRefGoogle Scholar
Salamon, D., Teixeira, S., Dutczak, S.M., and Stamatialis, D.F.: Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery. Ceram. Int. 40, 14793 (2014).CrossRefGoogle Scholar
Pant, H.R., Neupane, M.P., Pant, B., Panthi, G., Oh, H.J., Lee, M.H., and Kim, H.Y.: Fabrication of highly porous poly(e-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf. B 88, 587 (2011).CrossRefGoogle Scholar
Mogosanu, D.E., Verplancke, R., Dubruel, P., and Vanfleteren, J.: Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater. Des. 89, 1315 (2016).CrossRefGoogle Scholar
Wu, H., Kong, J., Yao, X., Zhao, C., Dong, Y., and Lu, X.: Polydopamine-assisted attachment of β-cyclodextrin on porous electrospun fibers for water purification under highly basic condition. Chem. Eng. J. 270, 101 (2015).CrossRefGoogle Scholar
Wang, B., Cheng, J.L., Wu, Y.P., Wang, D., and He, D.N.: Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23, 5 (2012).CrossRefGoogle Scholar
Dabirian, F., Hosseini Ravandi, S.A., Pishevar, A.R., and Abuzade, R.A.: A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J. Electrostat. 69, 540 (2011).CrossRefGoogle Scholar
Gonzalez, G.M., MacQueen, L.A., Lind, J.U., Fitzgibbons, S.A., Chantre, C.O., Huggler, I., Golecki, H.M., Goss, J.A., and Parker, K.K.: Production of synthetic, para-aramid and biopolymer nanofibers by immersion rotary jet-spinning. Macromol. Mater. Eng. 302, 1600365 (2017).CrossRefGoogle Scholar
Rodríguez-Tobías, H., Morales, G., and Grande, D.: Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fiber. Mater. Sci. Eng. C 101, 306 (2019).Google Scholar
Jin, G., He, R., Sha, B., Li, W., Qing, H., Teng, R., and Xu, F.: Electrospun three-dimensional aligned nano fibrous scaffolds for tissue engineering. Mater. Sci. Eng. C 92, 995 (2018).CrossRefGoogle Scholar
Vechietti, F.A., Marques, D., Muniz, N.O., and Santos, L.A.: Fibers obtaining and characterization using poly(lactic-co-glycolic acid) and poly(isoprene) containing hydroxyapatite and α TCP calcium phosphate by electrospinning method. Key Eng. Mater. 631, 173 (2015).CrossRefGoogle Scholar
Zhang, L., Wang, Z., Xiao, Y., Liu, P., Wang, S., Zhao, Y., Shen, M., and Shi, X.: Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Mater. Sci. Eng. C 91, 255 (2018).CrossRefGoogle ScholarPubMed
Touny, A.H., Lawrence, J.G., Jones, A.D., and Bhaduri, S.B.: Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J. Mater. Res. 25, 857 (2010).CrossRefGoogle Scholar
Vázquez, J.J. and Martínez, E.S.M.: Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. J. Mater. Res. 34, 2819 (2019).CrossRefGoogle Scholar
Nayak, R., Padhye, R., Kyratzis, I.L., Truong, Y., and Arnold, L.: Recent advances in nanofibre fabrication techniques. Text. Res. J. 82, 129 (2012).Google Scholar
Li, X., Chen, H., and Yang, B.: Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydr. Polym. 137, 459 (2016).CrossRefGoogle ScholarPubMed
Mellado, P., McIlwee, H.A., Badrossamay, M.R., Goss, J.A., Mahadevan, L., and Parker, K.K.: A simple model for nanofiber formation by rotary jet-spinning. Appl. Phys. Lett. 99, 203107 (2011).CrossRefGoogle Scholar
Ramakrishna, S., Teo, W., Lim, T., and Ma, Z.: An Introduction to Electrospinning and Nanofibers (World Scientific Publishing Company, Singapore, 2005), p. 396.CrossRefGoogle Scholar
Padron, S., Fuentes, A., Caruntu, D., and Lozano, K.: Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 113, 024318 (2013).CrossRefGoogle Scholar
Badrossamay, M.R., McIlwee, H.A., Goss, J.A., and Parker, K.K.: Nanofiber assembly by rotary jet-spinning. Nano Lett. 10, 2257 (2010).Google ScholarPubMed
Leng, G., Zhang, X., Shi, T., Chen, G., Wu, X., Liu, Y., Fang, M., Min, X., and Huang, Z.: Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning. Polymer 185, 121964 (2019).CrossRefGoogle Scholar
Wang, L., Shi, J., Liu, L., Secret, E., and Chen, Y.: Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies. Microelectron. Eng. 88, 1718 (2011).CrossRefGoogle Scholar
Stojanovska, E., Canbay, E., Pampal, E.S., Calisir, M.D., Agma, O., Polat, Y., Simsek, R., Gundogdu, N.A.S., Akgul, Y., and Kilic, A.: A review on non-electro nanofibre spinning techniques. RSC Adv. 6, 83783 (2016).CrossRefGoogle Scholar
Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., and Uddin, J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33, 4283 (2009).CrossRefGoogle Scholar
Machado-Paula, M.M., Corat, M.A.F., Lancellotti, M., Mi, G., Marciano, F.R., Vega, M.L., Hidalgo, A.A., Webster, T.J., and Lobo, A.O.: A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mater. Sci. Eng. C 111, 110706 (2020).CrossRefGoogle ScholarPubMed
Sun, F., Guo, J., Liu, Y., and Yu, Y.: Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers. Int. J. Biol. Macromol. 137, 420 (2019).CrossRefGoogle ScholarPubMed
Hobzova, R., Hampejsova, Z., Cerna, T., Hrabeta, J., Venclikova, K., Jedelska, J., Bakowsky, U., Bosakova, Z., Lhotka, M., Vaculin, S., Franek, M., Steinhart, M., Kovarova, J., Michalek, J., and Sirc, J.: Poly(D,L-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: Preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. Mater. Sci. Eng. C 98, 982 (2019).Google ScholarPubMed
Marques, D.R.: Fibras De Poli (Ácido Láctico-Co-Glicólico)/Poliisopreno Para Aplicação Em Engenharia De Tecidos. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, 2015.Google Scholar
Pandey, G.C. and Aswath, P.B.: Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation. J. Mech. Behav. Biomed. Mater. 1, 227 (2008).CrossRefGoogle ScholarPubMed
Cengiz, B., Gokce, Y., Yildiz, N., Aktas, Z., and Calimli, A.: Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf. 322, 29 (2008).CrossRefGoogle Scholar
Gan, L. and Pilliar, R.: Calcium phosphate sol–gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization. Biomaterials 25, 5303 (2004).CrossRefGoogle ScholarPubMed
Ilie, C., Stîngă, G., Iovescu, A., Purcar, V., Anghel, D.F., and Donescu, D.: The influence of nonionic surfactants on the carbopol-peg interpolymer complexes. Rev. Roum. Chim. 55, 409 (2010).Google Scholar
Bhattarai, S.R., Bhattarai, N., Viswanathamurthi, P., Yi, H.K., Hwang, P.H., and Kim, H.Y.: Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J. Biomed. Mater. Res. A 78, 247 (2006).CrossRefGoogle ScholarPubMed
Buttaro, L.M., Drufva, E., and Frey, M.W.: Phase separation to create hydrophilic yet non-water soluble PLA/PLA-b-PEG fibers via electrospinning. J. Appl. Polym. Sci. 131, 1 (2014).CrossRefGoogle Scholar
Trakoolwannachai, V., Kheolamai, P., and Ummartyotin, S.: Development of hydroxyapatite from eggshell waste and a chitosan-based composite: In vitro behavior of human osteoblast-like cell (Saos- 2) cultures. Int. J. Biol. Macromol. 134, 557 (2019).CrossRefGoogle Scholar
Kar, S., Kaur, T., and Thirugnanam, A.: Microwave-assisted synthesis of porous chitosan-modified montmorillonite–hydroxyapatite composite scaffolds. Int. J. Biol. Macromol. 82, 628 (2016).CrossRefGoogle ScholarPubMed
Ren, L., Pandit, V., Elkin, J., Denman, T., Cooper, J.A., and Kotha, S.P.: Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 5, 2337 (2013).CrossRefGoogle ScholarPubMed
Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).CrossRefGoogle Scholar
Junker, R., Dimakis, A., Thoneick, M., and Jansen, J.A.: Effects of implant surface coatings and composition on bone integration: A systematic review. Clin. Oral Implants Res. 20, 185 (2009).CrossRefGoogle Scholar
Lu, H.H., Subramony, S.D., Boushell, M.K., and Zhang, X.: Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann. Biomed. Eng. 38, 2142 (2010).CrossRefGoogle ScholarPubMed
Costa-Rodrigues, J., Fernandes, A., Lopes, M.A., and Fernandes, M.H.: Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 8, 1137 (2012).Google ScholarPubMed
Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844 (2007).CrossRefGoogle ScholarPubMed
Aparicio, C., Padrós, A., and Gil, F.-J.: In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. J. Mech. Behav. Biomed. Mater. 4, 1672 (2011).CrossRefGoogle ScholarPubMed
Chen, J., Birch, M.A., and Bull, S.J.: Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. J. Mater. Sci. Mater. Med. 21, 277282 (2010).CrossRefGoogle ScholarPubMed
Guerra, N.B.: Obtenção e Avaliação Da Blenda Poliisopreno Epoxidado - Poli(Ácido Lático-Co-Glicólico) Para Engenharia de Tecidos. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, 2018.Google Scholar
Marques, D.R., dos Santos, L.A.L., O'Brien, M.A., Cartmell, S.H., and Gough, J.E.: In vitro evaluation of poly(lactic-co-glycolic acid)/polyisoprene fibers for soft tissue engineering. J. Biomed. Mater. Res. B 105, 2581 (2017).CrossRefGoogle ScholarPubMed
Sungsanit, K., Kao, N., and Bhattacharya, S.N.: Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52, 108 (2012).CrossRefGoogle Scholar
Marcilla, A. and Beltran, M.: Handbook of Plasticizers (ChemTec Publishing, Toronto, 2004).Google Scholar
Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., and Zhang, X.: Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 49, 3834 (2013).CrossRefGoogle Scholar
Weitz, R.T., Harnau, L., Rauschenbach, S., Burghard, M., and Kern, K.: Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 8, 1187 (2008).CrossRefGoogle ScholarPubMed
Zhang, Z. and Sun, J.: Research on the development of the centrifugal spinning. MATEC Web Conf. 95, 07003 (2017).CrossRefGoogle Scholar
You, Y., Lee, S.J., Min, B.M., and Park, W.H.: Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J. Appl. Polym. Sci. 99, 1214 (2006).CrossRefGoogle Scholar
Tan, H., Inai, R., Kotaki, M., and Ramakrishna, S.: Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46, 6128 (2005).CrossRefGoogle Scholar
Faramarzi, A.R., Barzin, J., and Mobedi, H.: Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers Polym. 17, 1806 (2016).CrossRefGoogle Scholar
Troian, S.M., Wu, X.L., and Safran, S.A.: Fingering instability in thin wetting films. Phys. Rev. Lett. 62, 1496 (1989).CrossRefGoogle ScholarPubMed
Huppert, H.E.: Flow and instability of a viscous current down a slope. Nature 300, 427 (1982).CrossRefGoogle Scholar
Melo, F., Joanny, J.F., and Fauve, S.: Fingering instability of spinning drops. Phys. Rev. Lett. 63, 1958 (1989).CrossRefGoogle ScholarPubMed
Danoux, C.B., Barbieri, D., Yuan, H., de Bruijn, J.D., van Blitterswijk, C.A., and Habibovic, P.: In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4, 1 (2014).CrossRefGoogle ScholarPubMed
Rajzer, I.: Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J. Mater. Sci. 49, 5799 (2014).CrossRefGoogle Scholar
Santos, M.H., De Oliveira, M., Souza, L.P.d.F., Mansur, H.S., and Vasconcelos, W.L.: Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 7, 625 (2004).CrossRefGoogle Scholar
Kim, H., Himeno, T., Kokubo, T., and Nakamura, T.: Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26, 4366 (2005).CrossRefGoogle Scholar
Olad, A. and Azhar, F.F.: The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram. Int. 40, 10061 (2014).CrossRefGoogle Scholar
Liverani, L., Lacina, J., Roether, J.A., Boccardi, E., Killian, M.S., Schmuki, P., Schubert, D.W., and Boccaccini, A.R.: Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact. Mater. 3, 55 (2018).CrossRefGoogle ScholarPubMed
Shahbazarab, Z., Teimouri, A., Chermahini, A.N., and Azadi, M.: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int. J. Biol. Macromol. 108, 1017 (2018).CrossRefGoogle ScholarPubMed
Tsuneizumi, Y., Kuwahara, M., Okamoto, K., and Matsumura, S.: Chemical recycling of poly(lactic acid) based polymer blends using environmentally benign catalysts. Polym. Degrad. Stab. 95, 1387 (2010).CrossRefGoogle Scholar
Ramesh, S., Tan, C.Y., Bhaduri, S.B., and Teng, W.D.: Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 33, 1363 (2007).CrossRefGoogle Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).Google ScholarPubMed