Skip to main content
×
×
Home

Branching effect and morphology control in electrospun PbZr0.52Ti0.48O3 nanofibers

  • Arsen Gevorkyan (a1), Gennady E. Shter (a1), Yuval Shmueli (a1), Ahuva Buk (a1), Reut Meir (a1) and Gideon S. Grader (a1)...
Abstract
Abstract

Utilization of PbZrxTi1−xO3 (PZT) nanofibers as functional flexible fillers in sensing and energy harvesting applications requires uniform, submicrometer fibers with a large aspect ratio. Previous studies concentrated on the rheological effects on the fiber's diameter and morphology. However, reports on the effect of electric field on these fiber properties are still scarce. In this paper, the effects of surface charge and electric field on the fiber branching are decoupled. We show unequivocally that the external electric field governs this phenomenon. Low viscosity (∼0.12 Pa s) PZT sols yielded a sharp step-like transition from a large to a small diameter regime at electric fields above 0.8 kV/cm. On the other hand, high viscosity sols (∼0.74 Pa s) yielded a transition from a single to a bimodal distribution at the same electric field, due to the branching effect. An ability to obtain a single or bimodal diameter distribution in the range of 100–800 nm was demonstrated.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: grader@tx.technion.ac.il
References
Hide All
1.Dong Z., Scott K.J., and Wu Y.: Electrospinning materials for energy related applications and devices. J. Power Sources 196, 48864904 (2011).
2.Anton R.S. and Sodano A.H.: A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct. 16, R1R21 (2007).
3.Chang J., Dommer M., Chang C., and Lin L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1, 356371 (2012).
4.Wang Y. and Santiago-Aviles J.: Carbon and PZT Nanofibers through Electrospinning (VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG, Saarbrucken, Germany, 2010).
5.Jaffe B., Cook R.W., and Jaffe H.: Piezoelectric Ceramics (Academic Press, New York, NY, 1971).
6.Chen X., Xu S., Yao N., and Shi Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 21332137 (2010).
7.Xu S., Shi Y., and Kim S.: Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17, 44974501 (2006).
8.Angammana C.J. and Jayaram S.H.: The effects of electric field on the multijet electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47, 10281035 (2011).
9.Chowdhury M. and Stylios G.: Effect of experimental parameters on the morphology of electrospun nylon 6 fibres. Int. J. Basic Appl. Sci. 10, 116131 (2010).
10.Ramakrishna S., Fujihara K., Teo W., Lim T., and Ma Z.: An Introduction to Electrospinning and Nanofibers (World Scientific Publishing Co. Pte. Ltd., Singapore, 2005).
11.Alkoy Mensur E., Dagdeviren C., and Papila M.: Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite. J. Am. Ceram. Soc. 92, 25662570 (2009).
12.Hossain M. and Kim A.: The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning. Mater. Lett. 63, 789792 (2009).
13.Lee Yong D., Park J., Lee K., Kang J., Oh Y., and Cho N.: Synthesis and characterization of Pb(Zr0.5Ti0.5)O3 nanofibers. Curr. Appl. Phys. 11, 11391143 (2011).
14.Yarin L.A., Kataphinan W., and Reneker H.D.: Branching in electrospinning of nanofibers. J. Appl. Phys. 98, 064501 (2005).
15.Zargarian S.S. and Haddadi-Asl V.: A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. Iran. Polym. J. 19, 457468 (2010).
16.Koombhongse S., Liu W., and Reneker H.D.: Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. 39, 25982606 (2001).
17.Deitzel J.M., Kleinmeyer J.D., Hirvonen J.K., and Beck Tan N.C.: Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42, 81638170 (2001).
18.Dharmaraj N., Kim C., and Kim H.: Pb (Zr0.5Ti0.5)O3 nanofibres by electrospinning. Mater. Lett. 59, 30853089 (2005).
19.Fan M., Hui W., Li Z., Shen Z., Li H., Jiang A., Chen Y., and Liu R.: Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3Ti0.7)O3 nanofibers. Microelectron. Eng. 98, 371373 (2012).
20.Khajelakzay M. and Taheri-Nassaj E.: Synthesis and characterization of Pb(Zr0.52TI0.48)O3 nanofibers by electrospinning, and dielectric properties of PZT-resin composite. Mater. Lett. 75, 6164 (2012).
21.Etin A., Shter G., Gelman V., and Grader G.: Uniformity, composition, and surface tension in solution deposited PbZrxTi1−xO3 films. J. Mater. Res. 22, 103112 (2007).
22.Fuks D., Shter G.E., Mann-Lahav M., and Grader G.S.: Crack‐free drying of ceramic foams by the use of viscous cosolvents. J. Am. Ceram. Soc. 93, 36323636 (2010).
23.Ki C.S., Baek D.H., Gang K.D., Lee K.H., Um I.C., and Park Y.H.: Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 46, 50945102 (2005).
24.Demir M.M., Yilgor I., and Erman B.: Electrospinning of polyurethane fibers. Polymer 43(11), 33033309 (2002).
25.Henriques C., Vidinha R., Botequim D., Borges J.P., and Silva J.A.M.C.: A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J. Nanosci. Nanotechnol. 8, 111 (2008).
26.Zong X., Kim K., Fang D., Ran S., Hsiao B.S., and Chu B.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43, 44034412 (2002).
27.Zhao Z., Li J., Yuan X., Li X., Zhang Y., and Sheng J.: Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 97, 466474 (2005).
28.Deitzel J.M., Kleinmeyer J., Harris D., and Beck Tan N.C.: The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261272 (2001).
29.Thompson C., Chase G., Yarin A., and Reneker D.: Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 69136922 (2007).
30.Wu X-F., Salkovskiy Y., and Dzenis Y.A.: Modeling of solvent evaporation from polymer jets in electrospinning. Appl. Phys. Lett. 98, 223108 (2011).
31.Etin A., Shter G.E., Grader G.S., and Reisner G.M.: Interrelation of ferroelectricity, morphology, and thickness in sol–gel‐derived PbZrxTi1−xO3 films. J. Am. Ceram. Soc. 90, 7783 (2007).
32.Zhang C., Yuan X., Wu L., Han Y., and Sheng J.: Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41, 423432 (2005).
33.Frenot A. and Chronakis S.I.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8, 6475 (2003).
34.Zhou Z., Wu X., Gao X., Jiang L., Zhao Y., and Fong H.: Parameter dependence of conic angle of nanofibres during electrospinning. J. Phys. D: Appl. Phys. 44, 435401 (2011).
35.Reneker D.H. and Yarin A.L.: Electrospinning jets and polymer nanofibers. Polymer 49, 23872425 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 138 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.