Skip to main content

A brief review on the growth mechanism of CuO nanowires via thermal oxidation

  • Lijun Xiang (a1), Jian Guo (a1), Chenhui Wu (a1), Menglei Cai (a1), Xinrong Zhou (a1) and Nailiang Zhang (a1)...

For one-dimensional nanomaterials, the performances are strongly related to the diameters, lengths, morphologies, and structures, implying that it is of great significance to understand the related growth mechanisms and thus to achieve the desired nanostructures. Thermal oxidation of copper has been widely used to fabricate CuO nanowires (NWs), whereas the growth mechanism still remains controversial in spite of the extensive investigations. Therefore, this review aims to offer a critical discussion about the growth mechanisms. First, the effects of different growth conditions on the growth of CuO NWs are introduced for basic understanding. Subsequently, the proposed mechanisms in different literature studies, i.e., the vapor–solid, self-catalyzed growth, stress-induced growth, stress grain boundary (GB) diffusion, and oxygen concentration gradient, are discussed and summarized. It seems that the combination of “stress GB diffusion” and “oxygen concentration gradient” mechanisms could be relevant for the growth of CuO NWs via thermal oxidation of copper.

Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Hide All
1.Liu, L., Zhang, L., Kim, S.M., and Park, S.: Helical metallic micro- and nanostructures: Fabrication and application. Nanoscale 6, 9355 (2014).
2.Li, Y., Yang, X-Y., Feng, Y., Yuan, Z-Y., and Su, B-L.: One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37, 1 (2012).
3.Arafat, M.M., Dinan, B., Akbar, S.A., and Haseeb, A.S.M.A.: Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 12, 7207 (2012).
4.Devan, R.S., Patil, R.A., Lin, J-H., and Ma, Y-R.: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).
5.Filipič, G. and Cvelbar, U.: Copper oxide nanowires: A review of growth. Nanotechnology 23, 194001 (2012).
6.Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., and Yang, S.: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).
7.Cao, F., Jia, S., Zheng, H., Zhao, L., Liu, H., Li, L., Zhao, L., Hu, Y., Gu, H., and Wang, J.: Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Mater. 1, 053401 (2017).
8.Liu, H., Cao, F., Zheng, H., Sheng, H., Li, L., Wu, S., Liu, C., and Wang, J.: In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 51, 10443 (2015).
9.Tan, G., Wu, F., Yuan, Y., Chen, R., Zhao, T., Yao, Y., Qian, J., Liu, J., Ye, Y., Shahbazian-Yassar, R., Lu, J., and Amine, K.: Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016).
10.Anandan, S., Wen, X., and Yang, S.: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35 (2005).
11.Hsieh, C-T., Chen, J-M., Lin, H-H., and Shih, H-C.: Field emission from various CuO nanostructures. Appl. Phys. Lett. 83, 3383 (2003).
12.Feng, Y. and Zheng, X.: Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 10, 4762 (2010).
13.Liu, X., Yang, W., Chen, L., and Jia, J.: Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta 235, 519 (2017).
14.Zappa, D., Comini, E., Zamani, R., Arbiol, J., Morante, J.R., and Sberveglieri, G.: Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators, B 182, 7 (2013).
15.Sheng, H., Zheng, H., Jia, S., Li, L., Cao, F., Wu, S., Han, W., Liu, H., Zhao, D., and Wang, J.: Twin structures in CuO nanowires. J. Appl. Crystallogr. 49, 462 (2016).
16.Cao, M., Hu, C., Wang, Y., Guo, Y., Guo, C., and Wang, E.: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun., 1884 (2003).
17.Shrestha, K.M., Sorensen, C.M., and Klabunde, K.J.: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368 (2010).
18.Liu, X., Zhang, J., Kang, Y., Wu, S., and Wang, S.: Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 14, 620 (2012).
19.Fan, Y., Liu, R., Du, W., Lu, Q., Pang, H., and Gao, F.: Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. J. Mater. Chem. 22, 12609 (2012).
20.Wang, W., Wang, L., Shi, H., and Liang, Y.: A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm 14, 5914 (2012).
21.Ethiraj, A.S. and Kang, D.J.: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70 (2012).
22.Toboonsung, B. and Singjai, P.: Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloys Compd. 509, 4132 (2011).
23.Mukherjee, N., Show, B., Maji, S.K., Madhu, U., Bhar, S.K., Mitra, B.C., Khan, G.G., and Mondal, A.: CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248 (2011).
24.Jiang, X., Herricks, T., and Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).
25.Hsieh, C-T., Chen, J-M., Lin, H-H., and Shih, H-C.: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82, 3316 (2003).
26.Kumar, A., Srivastava, A.K., Tiwari, P., and Nandedkar, R.V.: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 (2004).
27.Gonçalves, A.M.B., Campos, L.C., Ferlauto, A.S., and Lacerda, R.G.: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).
28.Mimura, K., Lim, J-W., Isshiki, M., Zhu, Y., and Jiang, Q.: Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37, 1231 (2006).
29.Zhang, R.F.: Film formation in the second step of micro-arc oxidation on magnesium alloys. Corros. Sci. 52, 1285 (2010).
30.Laleh, M., Rouhaghdam, A.S., Shahrabi, T., and Shanghi, A.: Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloys Compd. 496, 548 (2010).
31.Yu, H-D., Zhang, Z., and Han, M-Y.: Metal corrosion for nanofabrication. Small 8, 2621 (2012).
32.Zheng, H., Wu, S., Sheng, H., Liu, C., Liu, Y., Cao, F., Zhou, Z., Zhao, X., Zhao, D., and Wang, J.: Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 104, 141906 (2014).
33.Glass, S. and Nienhaus, H.: Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 93, 168302 (2004).
34.Wang, Y., Fan, Z., Zhou, X., and Thompson, G.E.: Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys. Philos. Mag. Lett. 91, 516 (2011).
35.Bungaro, C., Noguera, C., Ballone, P., and Kress, W.: Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 79, 4433 (1997).
36.Francis, M.F. and Taylor, C.D.: First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability. Phys. Rev. B 87, 075450 (2013).
37.Zhou, G., Luo, L., Li, L., Ciston, J., Stach, E.A., and Yang, J.C.: Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 235502 (2012).
38.Atkinson, A. and Taylor, R.I.: The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos. Mag. A 39, 581 (1979).
39.Lawless, K.R.: The oxidation of metals. Rep. Prog. Phys. 37, 231 (1974).
40.Atkinson, A.: Transport processes during the growth of oxide films at elevated temperature. Rev. Mod. Phys. 57, 437 (1985).
41.Schröder, E., Fasel, R., and Kiejna, A.: Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 69, 193405 (2004).
42.Tylecote, R.F.: The oxidation of copper in the temperature range 200–800 °C. J. Inst. Met. 81, 681 (1952).
43.Yang, Q., Guo, Z., Zhou, X., Zou, J., and Liang, S.: Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air. Mater. Lett. 153, 128 (2015).
44.Vanithakumari, S.C., Shinde, S.L., and Nanda, K.K.: Controlled synthesis of CuO nanostructures on Cu foil, rod and grid. Mater. Sci. Eng., B 176, 669 (2011).
45.Sheng, H., Zheng, H., Cao, F., Wu, S., Li, L., Liu, C., Zhao, D., and Wang, J.: Anelasticity of twinned CuO nanowires. Nano Res. 8, 3687 (2015).
46.Zhang, K., Rossi, C., Tenailleau, C., Alphonse, P., and Chane-Ching, J.Y.: Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology 18, 275607 (2007).
47.Hsu, C-L., Tsai, J-Y., and Hsueh, T-J.: Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sens. Actuators, B 224, 95 (2016).
48.Zhong, M.L., Zeng, D.C., Liu, Z.W., Yu, H.Y., Zhong, X.C., and Qiu, W.Q.: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).
49.Kaur, M., Muthe, K.P., Despande, S.K., Choudhury, S., Singh, J.B., Verma, N., Gupta, S.K., and Yakhmi, J.V.: Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289, 670 (2006).
50.Xu, C.H., Woo, C.H., and Shi, S.Q.: The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36, 31 (2004).
51.Tu, C-H., Chang, C-C., Wang, C-H., Fang, H-C., Huang, M.R.S., Li, Y-C., Chang, H-J., Lu, C-H., Chen, Y-C., Wang, R-C., Tzeng, Y., and Liu, C-P.: Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 615, 754 (2014).
52.Han, Z., Lu, L., Zhang, H.W., Yang, Z.Q., Wang, F.H., and Lu, K.: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261 (2005).
53.Hansen, B.J., Chan, H-l., Lu, J., Lu, G., and Chen, J.: Short-circuit diffusion growth of long Bi-crystal CuO nanowires. Chem. Phys. Lett. 504, 41 (2011).
54.Yuan, L. and Zhou, G.: Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J. Electrochem. Soc. 159, C205 (2012).
55.Shao, P., Deng, S., Chen, J., and Xu, N.: Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires. Nanoscale Res. Lett. 6, 86 (2011).
56.Li, X., Zhang, J., Yuan, Y., Liao, L., and Pan, C.: Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 108, 024308 (2010).
57.Wang, J-P. and Cho, W.D.: Oxidation behavior of pure copper in oxygen and/or water vapor at intermediate temperature. ISIJ Int. 49, 1926 (2009).
58.Rao, P.M. and Zheng, X.: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).
59.Simas, R., Albert, G.N., Hua, J., Ying, T., Victor, I.K., Jani, S., Elena, D.O., Sofia, N.B., Alexander, N.O., and Esko, I.K.: A novel method for metal oxide nanowire synthesis. Nanotechnology 20, 165603 (2009).
60.Filipič, G., Baranov, O., Mozetič, M., and Cvelbar, U.: Growth dynamics of copper oxide nanowires in plasma at low pressures. J. Appl. Phys. 117, 043304 (2015).
61.Altaweel, A., Filipič, G., Gries, T., and Belmonte, T.: Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J. Cryst. Growth 407, 17 (2014).
62.Wagner, R.S. and Ellis, W.C.: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
63.Brenner, S.S. and Sears, G.W.: Mechanism of whisker growth—III nature of growth sites. Acta Metall. 4, 268 (1956).
64.Park, J-H. and Natesan, K.: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).
65.Zhu, Y., Mimura, K., and Isshiki, M.: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 537 (2005).
66.Yuan, L., Wang, Y., Mema, R., and Zhou, G.: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).
67.Lu, L., Wang, J., Zheng, H., Zhao, D., Wang, R., and Gui, J.: Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 27, 1895 (2012).
68.Farbod, M., Meamar Ghaffari, N., and Kazeminezhad, I.: Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 40, 517 (2014).
69.Chen, J.T., Zhang, F., Wang, J., Zhang, G.A., Miao, B.B., Fan, X.Y., Yan, D., and Yan, P.X.: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).
70.Lee, S-K. and Tuan, W-H.: Scalable process to produce CuO nanowires and their formation mechanism. Mater. Lett. 117, 101 (2014).
71.Mema, R., Yuan, L., Du, Q., Wang, Y., and Zhou, G.: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).
72.Cao, F., Zheng, H., Jia, S., Liu, H., Li, L., Chen, B., Liu, X., Wu, S., Sheng, H., Xing, R., Zhao, D., and Wang, J.: Atomistic observation of structural evolution during magnesium oxide growth. J. Phys. Chem. C 120, 26873 (2016).
73.Xu, C., Yang, X., Shi, S-Q., Liu, Y., Surya, C., and Woo, C.: Effects of local gas-flow field on synthesis of oxide nanowires during thermal oxidation. Appl. Phys. Lett. 92, 253117 (2008).
74.Rice, K.P., Han, J., Campbell, I.P., and Stoykovich, M.P.: In situ absorbance spectroscopy for characterizing the low temperature oxidation kinetics of sputtered copper films. Oxid. Met. 83, 89 (2015).
75.Xu, C.H., Woo, C.H., and Shi, S.Q.: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).
76.Wang, C., Wang, Y., Liu, X., Diao, F., Yuan, L., and Zhou, G.: Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles–CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 16, 17487 (2014).
77.Cao, F., Jia, S., Liu, X., Liu, Y., Zheng, H., and Wang, J.: Orientation domains in CuO nanowires. J. Chin. Electron Microsc. Soc. 36, 222 (2017).
78.Altaweel, A., Gries, T., Migot, S., Boulet, P., Mézin, A., and Belmonte, T.: Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress. Surf. Coat. Technol. 305, 254 (2016).
79.Cvelbar, U.: Towards large-scale plasma-assisted synthesis of nanowires. J. Phys. D: Appl. Phys. 44, 174014 (2011).
80.Ostrikov, K., Levchenko, I., Cvelbar, U., Sunkara, M., and Mozetic, M.: From nucleation to nanowires: A single-step process in reactive plasmas. Nanoscale 2, 2012 (2010).
81.Cvelbar, U., Chen, Z., Sunkara, M.K., and Mozetič, M.: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).
82.Chen, Z., Cvelbar, U., Mozetič, M., He, J., and Sunkara, M.K.: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).
83.Nasibulin, A., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P., Shandakov, S., Nasibulina, L., Jani, S., and Kauppinen, E.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).
84.Zou, L., Li, J., Zakharov, D., Stach, E.A., and Zhou, G.: In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).
85.Li, L., Luo, L., Ciston, J., Saidi, W.A., Stach, E.A., Yang, J.C., and Zhou, G.: Surface-step-induced oscillatory oxide growth. Phys. Rev. Lett. 113, 136104 (2014).
86.Ferris, A., Reig, B., Eddarir, A., Pierson, J-F., Garbarino, S., Guay, D., and Pech, D.: Atypical properties of FIB-patterned RuOx nanosupercapacitors. ACS Energy Lett. 2, 1734 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed