Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T14:31:47.709Z Has data issue: false hasContentIssue false

Broadband near-infrared emission from Bi-doped aluminosilicate glasses

Published online by Cambridge University Press:  31 January 2011

Shifeng Zhou
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Gaofeng Feng
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Jiaxing Bao
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Hucheng Yang
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: qjr@zju.edu.cn
Get access

Abstract

Bi-doped sodium–potassium aluminosilicate glasses were synthesized and characterized. Broadband near-infrared (IR) emission covered the whole telecommunication wavelength region, with a maximum peak at about 1250 nm, a full width at half-maximum of about 370 nm, and a lifetime longer than 420 μs. The present glasses are potential materials for tunable lasers and optical amplifiers. The decrease of active Bi center concentration with the increase of Na2O content and the addition of CeO2are first reported here, and the IR emission center in sodium–potassium aluminosilicate glasses might be ascribed to low-valence-state bismuth, most probably, Bi+.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujimoto, Y.Nakatsuka, M.: Infrared luminescence from bismuth-doped silica glass. Jpn. J. Appl. Phys. 40, L279 2001Google Scholar
2Meng, X., Qiu, J., Peng, M., Chen, D., Zhao, Q., Jiang, X.Zhu, C.: Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. Opt. Express 13, 1635 2005CrossRefGoogle ScholarPubMed
3Peng, M., Qiu, J., Chen, D., Meng, X.Zhu, C.: Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2glasses doped with Bi2O3. Opt. Express 13, 6892 2005Google Scholar
4Suzuki, T.Ohishi, Y.: Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2glass. Appl. Phys. Lett. 88, 191912 2006Google Scholar
5Psaila, N.D., Thomson, R.R., Bookey, H.T., Kar, A.K., Chiodo, N., Osellame, R., Cerullo, G., Brown, G., Jha, A.Shen, S.: Femtosecond laser inscription of optical waveguides in bismuth ion doped glass. Opt. Express 14, 10452 2006Google Scholar
6Batchelor, C., Chung, W.J., Shen, S.Jha, A.: Enhanced room-temperature emission in Cr4+ions containing alumino-silicate glasses. Appl. Phys. Lett. 82, 4035 2003Google Scholar
7Peng, M., Meng, X., Chen, D.Qiu, J.: Comment on “Enhanced room-temperature emission in Cr4+ions containing alumino-silicate glasses.” Appl. Phys. Lett. 87, 066103 2005Google Scholar
8Fujimoto, Y.Nakatsuka, M.: Optical amplification in bismuth-doped silica glass. Appl. Phys. Lett. 82, 3325 2003Google Scholar
9Dianov, E.M., Dvoyrin, V.V., Mashinsky, V.M., Umnikov, A.A., Yashkov, M.V.Guryanov, A.N.: CW bismuth fibre laser. Quant. Electron. 35, 1083 2005Google Scholar
10Blasse, A.Bril, A.: Investigations on Bi3+-activated phosphors. J. Chem. Phys. 48, 217 1968CrossRefGoogle Scholar
11Blasse, A., Meijerink, A., Nomes, M.Zuidema, J.: Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi). J. Phys. Chem. Solids 55, 171 1994Google Scholar
12Huang, L., Jha, A., Shen, S.Liu, X.: Broadband emission in Er3+-Tm3+codoped tellurite fibre. Opt. Express 12, 2429 2004Google Scholar
13Kanoun, A., Jaba, N.Brenier, A.: Time-resolved up-converted luminescence in Er3+-doped TeO2-ZnO glass. Opt. Mater. 26, 79 2004CrossRefGoogle Scholar
14Yang, J., Dai, S., Zhou, Y., Wen, L., Hu, L.Jiang, Z.: Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier. J. Appl. Phys. 93, 977 2003CrossRefGoogle Scholar
15Suzuki, T., Murugan, G.S.Ohishi, Y.: Optical properties of transparent Li2O-Ga2O3-SiO2glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 2005Google Scholar
16Xia, H.Wang, X.: Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X = Na2O, BaO, Y2O3) glasses. Appl. Phys. Lett. 89, 051917 2006Google Scholar
17Dvoyrin, V.V., Mashinsky, V.M., Bulatov, L.I., Bufetov, I.A., Shubin, A.V., Melkumov, M.A., Kustov, E.F., Dianov, E.M., Umnikov, A.A., Khopin, V.F., Yashkov, M.V.Guryanovb, A.N.: Bismuth-doped-glass optical fibers: A new active medium for lasers and amplifiers. Opt. Lett. 31, 2966 2006Google Scholar
18Bartram, R.H., Fockele, M., Lohse, F.Spaeth, J-M.: Crystal-field model of the Pb0(2) centre in SrF2. J. Phys.: Condens. Matter 1, 27 1989Google Scholar
19Fockele, M., Lohse, F., Spaeth, J-M.Bartram, R.H.: Identification and optical properties of axial lead centres in alkaline-earth fluorides. J. Phys.: Condens. Matter 1, 13 1989Google Scholar
20Peng, M., Qiu, J., Chen, D., Meng, X.Zhu, C.: Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses. Opt. Lett. 30, 2433 2005CrossRefGoogle ScholarPubMed
21Duffy, J.A.: Redox equilibria of glass. J. Non-Cryst. Solids 196, 45 1996Google Scholar