Skip to main content
×
×
Home

C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst

  • Meng Wang (a1), Zhijian Peng (a2), Hong Li (a1), Zengying Zhao (a3) and Xiuli Fu (a4)...
Abstract

As an important member of semiconducting transition metal oxides, MoO2 nanomaterials have many advantages in optical and electrical applications. However, MoO2 itself has no significant photocatalytic performance possibly because of its inferior conductivity and strong recombination of photogenerated electron–hole pairs. Here, we propose a facile, one-step pyrolysis method to prepare a novel C fibers@MoO2 nanoparticles core–shell composite, where the oxidative MoO2 nanoparticles in situ grew on the surface of conducting C fibers. Due to the compositing of MoO2 and C fibers, during photocatalysis tests, the recombination of photogenerated electron–hole pairs was effectively inhibited, and the lifetime of the photogenerated carries was efficiently prolonged, finally significantly improving the solar-driven photocatalytic activity on degrading various organic and inorganic pollutants in water, such as methylene blue, rhodamine B, phenol, and potassium dichromate, showing the great potential for environmental remediation by degrading toxic industrial chemicals in waste water under sunlight. Moreover, the composite presented good stability in composition and structure during the repeated use and long-term storage. In addition, this one-step growth method is an easy-to-handle, environmentally friendly, and low-cost synthesis method for large-scale production.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: pengzhijian@cugb.edu.cn
b) e-mail: xiulifu@bupt.edu.cn
Footnotes
Hide All

Contributing Editor: Xiaobo Chen

Footnotes
References
Hide All
1. Liu, Y., Tian, L.H., Tan, X.Y., Li, X., and Chen, X.B.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).
2. Li, Y., Lu, D., Zhou, L.Q., Ye, M.L., Xiong, X., Yang, K.Z., Pan, Y.X., Chen, M.H., Wu, P., Li, T., Chen, Y.T., Wang, Z., and Xia, Q.H.: Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. J. Mater. Res. 31, 3712 (2016).
3. Wen, J.Q., Li, X., Liu, W., Fang, Y.P., Xie, J., and Xu, Y.H.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
4. Hu, Z., Liu, G., Chen, X., Shen, Z., and Yu, J.: Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 26, 4445 (2016).
5. Feng, Z., Zeng, L., Chen, Y.J., Ma, Y.Y., Zhao, C.R., Jin, R.S., Lu, Y., Wu, Y., and He, Y.M.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
6. Liu, J., Zhang, Z., Pan, C., Zhao, Y., Su, X., Zhou, Y., and Yu, D.: Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation. Mater. Lett. 58, 3812 (2004).
7. Wang, F. and Lu, B.: Well-aligned MoO2 nanowires arrays: Synthesis and field emission properties. Physica B 404, 190 (2009).
8. Alsaif, M.M.Y.A., Field, M.R., Murdoch, B.J., Daeneke, T., Latham, K., Chrimes, A.F., Zoolfakar, A.S., Russo, S.P., Ou, J.Z., and Kalantar-zadeh, K.: Substoichiometric two-dimensional molybdenum oxide flakes: A plasmonic gas sensing platform. Nanoscale 6, 12780 (2014).
9. Sun, Y.M., Hu, X.L., Luo, W., and Huang, Y.H.: Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5, 7100 (2011).
10. Edgar, W.H., Jeremy, M.B., and Holm, R.H.: Thermodynamic fitness of molybdenum (IV,VI) complexes for oxygen-atom transfer reactions, including those with enzymic substrates. J. Am. Chem. Soc. 108, 6992 (1986).
11. Liao, L., Wang, S.N., Xiao, J.J., Bian, X.J., and Zhang, Y.H.: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387 (2013).
12. Scanlon, D.O., Watson, G.W., Payne, D.J., and Atkinson, G.R.: Theoretical and experimental study of the electronic structures of MoO3 and MoO2 . J. Phys. Chem. C 114, 4636 (2010).
13. Li, X., Shao, J., Li, J., Zhang, L., Qu, Q., and Zheng, H.: Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J. Power Sources 237, 80 (2013).
14. Liang, Z., Wu, H., Wang, Z., and Lou, X.: Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 3, 4853 (2011).
15. Liu, Y.L., Zhang, H., Ouyang, P., and Li, Z.C.: One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim. Acta 102, 429 (2013).
16. Yoon, S., Jung, K., Jin, C., and Shin, K.: Synthesis of nitrided MoO2 and its application as anode materials for lithium-ion batteries. J. Alloys Compd. 536, 179 (2012).
17. Zhang, B.H., Xue, Y.G., Jiang, A.N., Xue, Z.M., Li, Z.H., and Hao, J.C.: Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 9, 7217 (2017).
18. Gu, S.Y., Qin, M.L., Zhang, H.A., Ma, J.D., Wu, H.Y., and Qu, X.H.: Facile solution combustion synthesis of MoO2 nanoparticles as efficient photocatalysts. CrystEngComm 19, 6516 (2017).
19. Silaev, I.V., Khubezhov, S.A., Ramonova, A.G., Grigorkina, G.S., Kaloeva, A.G., Demeev, Z.S., Bliev, A.P., Sekiba, D., Ogura, S., Fukutani, K., and Magkoev, T.T.: Photoinduced conversion of carbon dioxide and water molecules to methanol on the surface of molybdenum oxide MoO x (x < 2). Tech. Phys. Lett. 42, 271 (2016).
20. Dukstiene, N. and Sinkeviciute, D.: Photoelectrochemical properties of MoO2 thin films. J. Solid State Electrochem. 17, 1175 (2013).
21. Zou, L.L., Shen, X.Q., Wang, Q.J., Wang, Z., Yang, X.C., and Jing, M.X.: Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous rhodamine B degradation. J. Mater. Res. 30, 2763 (2015).
22. Lu, Q.P., Yu, Y.F., Ma, Q.L., Chen, B., and Zhang, H.: 2D transition-metal-dichalcogenide-nanosheet- based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917 (2016).
23. Peng, Q., Wang, Z.Y., Sa, B.S., Wu, B., and Sun, Z.M.: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6, 31994 (2016).
24. Xia, T., Zhang, W., Wang, Z.H., Zhang, Y.L., Song, X.Y., Murowchick, J., Battaglia, V., Liu, G., and Chen, X.B.: Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6, 109 (2014).
25. Zou, S., Fu, Z.H., Xiang, C., Wu, W.F., Tang, S.P., Liu, Y.C., and Yin, D.L.: Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chin. J. Catal. 36, 1077 (2015).
26. Liu, X., Zhang, Y.H., Jia, Y.S., Jiang, J.Z., Wang, Y.B., Chen, X.S., and Gui, T.: Visible light-responsive carbon-decorated p-type semiconductor CaFe2O4 nanorod photocatalyst for efficient remediation of organic pollutants. Chin. J. Catal. 38, 1770 (2017).
27. Gao, H.L., Liu, J.M., Zhang, J., Zhu, Z.Q., Zhang, G.L., and Liu, Q.J.: Influence of carbon and yttrium co-doping on the photocatalytic activity of mixed phase TiO2 . Chin. J. Catal. 38, 1688 (2017).
28. Zhang, J.T. and Huang, F.: Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Appl. Surf. Sci. 358, 287 (2015).
29. Li, K., Su, F.Y., and Zhang, W.D.: Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl. Surf. Sci. 375, 110 (2016).
30. Chen, A., Li, C., Tang, R., Yin, L., and Qi, Y.: MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Phys. Chem. Chem. Phys. 15, 13601 (2013).
31. Liu, X., Ji, W., Liang, J., Peng, L., and Hou, W.: MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties. Phys. Chem. Chem. Phys. 16, 20570 (2014).
32. Li, Z.R., Fu, Y.L., Jiang, M., Hu, T.D., Liu, T., and Xie, Y.N.: Active carbon supported Mo–K catalysts used for alcohol synthesis. J. Catal. 199, 155 (2001).
33. Pan, X., Li, S., Wang, Z., Yang, L., Zhu, K., Ren, L., Lei, M., and Liu, J.: Core–shell MoO2/C nanospheres embedded in bubble sheet-like carbon film as lithium ion battery anodes. Mater. Lett. 199, 139 (2017).
34. Wang, Y., Yu, L., and Lou, X.W.: Formation of triple-shelled molybdenum-polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries. Angew. Chem. Int. Ed. 55, 14668 (2016).
35. Jiang, J., Yang, W., Wang, H., Zhao, Y., Guo, J., Zhao, J., Beidaghi, M., and Gao, L.: Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism. Electrochim. Acta 240, 379 (2017).
36. Liu, B., Zhao, X., Yuan, T., Zhao, D., Hu, C., and Gao, M.: A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Phys. Chem. Chem. Phys. 15, 8831 (2013).
37. Chen, Z., Yang, T., Shi, H., Wang, T., Zhang, M., and Cao, G.: Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage. Adv. Mater. Interfaces 4, 1600816 (2017).
38. Cho, W., Song, J.H., Kim, J., Jeong, G., Lee, E.Y., and Kim, Y.: Electrochemical characteristics of nano-sized MoO2/C composite anode materials for lithium-ion batteries. J. Appl. Electrochem. 42, 909 (2012).
39. Huang, H., Liu, K., Chen, K., Zhang, Y.L., Zhang, Y.H., and Wang, S.C.: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).
40. Zhou, E., Wang, C., Zhao, Q., Li, Z., Shao, M., Deng, X., Liu, X., and Xu, X.: Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts. Ceram. Int. 42, 2198 (2016).
41. Bhaskar, A., Deepa, M., Rao, T.N., and Varadaraju, U.V.: Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169 (2012).
42. Zhou, E., Wang, C., Shao, M., Deng, X., and Xu, X.: MoO2 nanoparticles grown on carbon fibers as anode materials for lithium-ion batteries. Ceram. Int. 43, 760 (2017).
43. Qiu, S., Lu, G.X., Liu, J.R., Lv, H.L., Hu, C.X., Li, B., Yan, X.R., Guo, J., and Guo, Z.H.: Enhanced electrochemical performances of MoO2 nanoparticles composited with carbon nanotubes for lithium-ion battery anode. RSC Adv. 5, 87286 (2015).
44. Choi, J.G. and Thompson, L.T.: XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143 (1996).
45. Chen, X.Y., Zhang, Z.J., Li, X.X., Shi, C.W., and Li, X.L.: Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach. Chem. Phys. Lett. 418, 105 (2006).
46. Deurbergue, A. and Oberlin, A.: Stabilization and carbonization of pan-based carbon fibers as related to mechanical properties. Carbon 29, 621 (1991).
47. Yu, J., Huang, B., Qin, X., Zhang, X.Y., Wang, Z.Y., and Liu, H.X.: Hydrothermal synthesis and characterization of ZnO films with different nanostructures. Appl. Surf. Sci. 257, 5563 (2011).
48. Shen, Z.G., Zhao, Z.Y., Qian, J.W., Peng, Z.J., and Fu, X.L.: Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).
49. Qian, J.W., Zhao, Z.Y., Shen, Z.G., Zhang, G.L., Peng, Z.J., and Fu, X.L.: A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 30, 3746 (2015).
50. Mortensen, P.M., de Carvalho, H.W.P., Grunwaldt, J.D., Jensen, P.A., and Jensen, A.D.: Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. J. Catal. 328, 208 (2015).
51. Mytych, P., Giela, P., and Stasicda, Z.: Photoredox processes in the Cr(VI)–Cr(III)–oxalate system and their environmental relevance. Appl. Catal., B 59, 161 (2005).
52. Lu, Z., Zeng, L., Song, W.L., Qin, Z.Y., Zeng, D.W., and Xie, C.S.: In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal., B 202, 489 (2017).
53. Wen, J.Q., Li, X., Li, H.Q., Ma, S., He, K.L., Xu, Y.H., Fang, Y.P., Liu, W., and Gao, Q.Z.: Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Appl. Surf. Sci. 358, 204 (2015).
54. Wen, J.Q., Xie, J., Yang, Z.H., Shen, R.C., Li, H.Y., Luo, X.Y., Chen, X.B., and Li, X.: Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons. ACS Sustain. Chem. Eng. 5, 2224 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Wang et al. supplementary material
Figures S1-S7

 PDF (750 KB)
750 KB

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 209 *
Loading metrics...

* Views captured on Cambridge Core between 27th February 2018 - 15th August 2018. This data will be updated every 24 hours.