Skip to main content
×
×
Home

Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy

  • Chaomin Zhang (a1), Ehsan Vadiee (a1), Richard R. King (a1) and Christiana B. Honsberg (a1)
Abstract

Integration of the III–V material systems on Si is an enabling technology for achieving high efficiency heterojunction Si-based photovoltaic devices. Gallium phosphide (GaP) offers numerous potential electrical, optical, and material advantages over amorphous silicon (a-Si) for the realization of several heterojunction solar cell designs. In this paper, details are given for the growth, fabrication, and characterization of different n-GaP/n-Si heterojunction solar cells to explore the effect of GaP as a carrier-selective contact. The cell performance is promising with high Si bulk lifetime (∼2.2 ms at the injection level of 1015 cm−3) and an open-circuit voltage of 618 mV and an efficiency of 13.1% in this new solar cell design. In addition to GaP as an electron-selective contact, MoO x was successfully implemented as a hole-selective contact in the n-GaP/n-Si heterojunction solar cell, increasing efficiency to 14.1% by improving the short wavelength response. The Si bulk lifetime is maintained during growth of GaP on Si by two different approaches and their effects on GaP/Si solar cell performance are also presented.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: chaomin.zhang@asu.edu
Footnotes
Hide All

Contributing Editor: Sam Zhang

Footnotes
References
Hide All
1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3 (2017).
2. Wurfel, U., Cuevas, A., and Wurfel, P.: Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461 (2015).
3. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).
4. Sakata, I. and Kawanami, H.: Band discontinuities in gallium phosphide/crystalline silicon heterojunctions studied by internal photoemission. Appl. Phys. Express 1, 91201 (2008).
5. Limpert, S., Ghosh, K., Wagner, H., Bowden, S., Honsberg, C., Goodnick, S., Bremner, S., Ho-Baillie, A., and Green, M.: Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell. In 2014 IEEE 40th Photovoltaic Specialist Conference (IEEE, Denver, Colorado 2014); p. 836.
6. Feifel, M., Rachow, T., Benick, J., Ohlmann, J., Janz, S., Hermle, M., Dimroth, F., and Lackner, D.: Gallium phosphide window layer for silicon solar cells. IEEE J. Photovolt. 6, 384 (2016).
7. Grassman, T.J., Carlin, J.A., Galiana, B., Yang, F., Mills, M.J., and Ringel, S.A.: MOCVD-grown GaP/Si subcells for integrated III–V/Si multijunction photovoltaics. IEEE J. Photovolt. 4, 972 (2014).
8. Feifel, M., Ohlmann, J., Benick, J., Rachow, T., Janz, S., Hermle, M., Dimroth, F., Belz, J., Beyer, A., Volz, K., and Lackner, D.: MOVPE grown gallium phosphide–silicon heterojunction solar cells. IEEE J. Photovolt. 7, 502 (2017).
9. Beck, E.E., Blakeslee, A.E., and Gessert, T.A.: Application of GaP/Si heteroepitaxy to cascade solar cells. Sol. Cell. 24, 205 (1988).
10. Wagner, H., Ohrdes, T., Dastgheib-Shirazi, A., Puthen-Veettil, B., König, D., and Altermatt, P.P.: A numerical simulation study of gallium–phosphide/silicon heterojunction passivated emitter and rear solar cells. J. Appl. Phys. 115, 44508 (2014).
11. Zhang, C., Faleev, N.N., Ding, L., Boccard, M., Bertoni, M., Holman, Z., King, R.R., and Honsberg, C.B.: Hetero-emitter GaP/Si solar cells with high Si bulk lifetime. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 19501953.
12. Green, M.A.: The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190 (2015).
13. García-Tabarés, E., Carlin, J.A., Grassman, T.J., Martín, D., Rey-Stolle, I., and Ringel, S.A.: Evolution of silicon bulk lifetime during III–V-on-Si multijunction solar cell epitaxial growth. Prog. Photovoltaics Res. Appl. 24, 634 (2016).
14. Varache, R., Darnon, M., Descazeaux, M., Martin, M., Baron, T., and Muñoz, D.: Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell. Energy Procedia 77, 493 (2015).
15. Warren, E.L., Kibbler, A.E., France, R.M., Norman, A.G., Olson, J.M., and McMahon, W.E.: Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces. In 2015 IEEE 42nd Photovoltaic Specialis Conference (IEEE, New Orleans, 2015); pp. 14.
16. Ding, L., Zhang, C., Nærland, T.U., Faleev, N., Honsberg, C., and Bertoni, M.I.: Silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial III–V material growth. Energy Procedia 92, 617 (2016).
17. Ding, L., Zhang, C., Norland, T.U., Faleev, N., Honsberg, C., and Bertoni, M.: On the source of silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial growth of III-V materials. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 20482051.
18. Zhang, C., Kim, Y., Faleev, N.N., and Honsberg, C.B.: Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy. J. Cryst. Growth 475, 83 (2017).
19. Ohlmann, J., Feifel, M., Rachow, T., Benick, J., Janz, S., Dimroth, F., and Lackner, D.: Influence of metal–organic vapor phase epitaxy reactor environment on the silicon bulk lifetime. IEEE J. Photovolt. 6, 1668 (2016).
20. Bevk, J., Mannaerts, J.P., Feldman, L.C., Davidson, B.A., and Ourmazd, A.: Ge–Si layered structures: Artificial crystals and complex cell ordered superlattices. Appl. Phys. Lett. 49, 286 (1986).
21. Takagi, Y., Yonezu, H., Samonji, K., Tsuji, T., and Ohshima, N.: Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates. J. Cryst. Growth 187, 42 (1998).
22. Ishizaka, A. and Shiraki, Y.: Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).
23. Zhang, C., Ding, L., Boccard, M., Nærland, T.U., Faleev, N., Bowden, S., Bertoni, M., and Honsberg, C.: Practical Approaches to Mitigate Minority-Carrier Lifetime Degradation in Si Wafers (submitted).
24. Khedher, N., Hajji, M., Hassen, M., Ben Jaballah, A., Ouertani, B., Ezzaouia, H., Bessais, B., Selmi, A., and Bennaceur, R.: Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol. Energy Mater. Sol. Cells 87, 605 (2005).
25. Herasimenka, S.Y., Dauksher, W.J., Boccard, M., and Bowden, S.: ITO/SiO x :H stacks for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 98 (2016).
26. Street, R.A., Biegelsen, D.K., and Knights, J.C.: Defect states in doped and compensated a-Si:H. Phys. Rev. B 24, 969 (1981).
27. Bivour, M., Temmler, J., Steinkemper, H., and Hermle, M.: Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34 (2015).
28. Battaglia, C., de Nicolás, S.M., De Wolf, S., Yin, X., Zheng, M., Ballif, C., and Javey, A.: Silicon heterojunction solar cell with passivated hole selective MoO x contact. Appl. Phys. Lett. 104, 113902 (2014).
29. McIntosh, K.R. and Baker-Finch, S.C.: OPAL 2: Rapid optical simulation of silicon solar cells. In 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, Texas, 2012); pp. 000265000271.
30. Holman, Z.C., Descoeudres, A., Barraud, L., Fernandez, F.Z., Seif, J.P., De Wolf, S., and Ballif, C.: Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7 (2012).
31. Battaglia, C., Yin, X., Zheng, M., Sharp, I.D., Chen, T., McDonnell, S., Azcatl, A., Carraro, C., Ma, B., Maboudian, R., Wallace, R.M., and Javey, A.: Hole selective MoO x contact for silicon solar cells. Nano Lett. 14, 967 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 12
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 424 *
Loading metrics...

* Views captured on Cambridge Core between 28th February 2018 - 19th August 2018. This data will be updated every 24 hours.