Skip to main content
×
Home
    • Aa
    • Aa

Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination

  • Seung Min Kim (a1), Cary L. Pint (a2), Placidus B. Amama (a3), Robert H. Hauge (a4), Benji Maruyama (a5) and Eric A. Stach (a1)...
Abstract

Detailed understanding of growth termination in vertically aligned single-walled carbon nanotubes (SWNTs) made via supergrowth, or water-assisted growth, remains critical to achieving the ultralong SWNTs necessary for next-generation applications. We describe the irreversible catalyst morphology evolution that occurs during growth, and which limits the lifetime of surface supported catalysts. Growth termination is strongly dependent on growth temperature, but not sensitive to C2H2:H2O ratio. In addition to both planar Ostwald ripening of small (sub-5 nm) Fe catalyst particles and diffusion of metal atoms into the alumina support, other features that contribute to growth termination or deceleration are described, including center-of-mass particle motions and coalescence of smaller species of surface supported Fe nanoparticles. Additionally, a temperature-induced structural transition in the alumina catalyst support is found to be coincident with abrupt growth termination at temperatures of 800 °C and higher. In situ electron microscopy observations are used to directly support these observations.

Copyright
Corresponding author
a)These authors contributed equally to this work.
b)Address all correspondence to this author. e-mail: estach@bnl.gov
References
Hide All
1.Yu M.F., Lourie O., Dyer M.J., Moloni K., Kelly T.F., Ruoff R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000)
2.Wei B.Q., Vajtai R., Ajayan P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001)
3.McEuen P.L., Fuhrer M.S., Park H.K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78 (2002)
4.Hecht D., Hu L.B., Gruner G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006)
5.Pint C.L., Xu Y.Q., Morosan E., Hauge R.H. Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes. Appl. Phys. Lett. 94, 182107 (2009)
6.Hone J., Llaguno M.C., Nemes N.M., Johnson A.T., Fischer J.E., Walters D.A., Casavant M.J., Schmidt J., Smalley R.E. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000)
7.Behabtu N., Green M.J., Pasquali M. Carbon nanotube-based neat fibers. Nano Today 3, 24 (2008)
8.Wu Z.C., Chen Z.H., Du X., Logan J.M., Sippel J., Nikolou M., Kamaras K., Reynolds J.R., Tanner D.B., Hebard A.F., Rinzler A.G. Transparent, conductive carbon nanotube films. Science 305, 1273 (2004)
9.Amama P.B., Pint C.L., McJilton L., Kim S.M., Stach E.A., Murray P.T., Hauge R.H., Maruyama B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44 (2009)
10.Futaba D.N., Goto J., Yasuda S., Yamada T., Yumura M., Hata K. A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure. J. Am. Chem. Soc. 131, 15992 (2009)
11.Futaba D.N., Goto J., Yasuda S., Yamada T., Yumura M., Hata K. General rules governing the highly efficient growth of carbon nanotubes. Adv. Mater. 21, 4811 (2009)
12.Futaba D.N., Hata K., Yamada T., Mizuno K., Yumura M., Iijima S. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005)
13.Yamada T., Maigne A., Yudasaka M., Mizuno K., Futaba D.N., Yumura M., Iijima S., Hata K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 8, 4288 (2008)
14.Yasuda S., Futaba D.N., Yamada T., Satou J., Shibuya A., Takai H., Arakawa K., Yumura M., Hata K. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction. ACS Nano. 3, 4164 (2009)
15.Zhao B., Futaba D.N., Yasuda S., Akoshima M., Yamada T., Hata K. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano. 3, 108 (2009)
16.Hata K., Futaba D.N., Mizuno K., Namai T., Yumura M., Iijima S. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362 (2004)
17.Noda S., Hasegawa K., Sugime H., Kakehi K., Zhang Z.Y., Maruyama S., Yamaguchi Y. Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys., Part 2 46, L399 (2007)
18.Pint C.L., Xu Y.Q., Pasquali M., Hauge R.H. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano. 2, 1871 (2008)
19.Huang J.Q., Zhang Q., Zhao M.Q., Wei F. The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation. Carbon 48, 1441 (2010)
20.Amama P.B., Pint C.L., Kim S.M., McJilton L., Eyink K.G., Stach E.A., Hauge R.H., Maruyama B. Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4, 895 (2010)
21.Kim S.M., Pint C.L., Amama P.B., Zahkarov D.N., Hauge R.H., Maruyama B., Stach E.A. Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett. 1, 918 (2010)
22.Pint C.L., Pheasant S.T., Parra-Vasquez A.N.G., Horton C., Xu Y.Q., Hauge R.H. Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 4125 (2009)
23.Liu H., Zhang Y., Li R.Y., Sun X.L., Wang F.P., Ding Z.F., Merel P., Desilets S. Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor. Appl. Surf. Sci. 256, 4692 (2010)
24.Yoshihara N., Ago H., Tsuji M. Chemistry of water-assisted carbon nanotube growth over Fe–Mo/MgO catalyst. J. Phys. Chem. C 111, 11577 (2007)
25.Wen Q., Zhang R.F., Qian W.Z., Wang Y.R., Tan P.H., Nie J.Q., Wei F. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 mu m/s. Chem. Mater. 22, 1294 (2010)
26.Hu B., Ago H., Yoshihara N., Tsuji M. Effects of water vapor on diameter distribution of SWNTs grown over Fe/MgO-based catalysts. J. Phys. Chem. C 114, 3850 (2010)
27.Hasegawa K., Noda S., Sugime H., Kakehi K., Maruyama S., Yamaguchi Y. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. J. Nanosci. Nanotechnol. 8, 6123 (2008)
28.Huang J.Q., Zhang Q., Zhao M.Q., Wei F. Process intensification by CO2 for high quality carbon nanotube forest growth: Double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2, 872 (2009)
29.Zhang Y.Y., Gregoire J.M., van Dover R.B., Hart A.J. Ethanol-promoted high-yield growth of few-walled carbon nanotubes. J. Phys. Chem. C 114, 6389 (2010)
30.Murakami Y., Chiashi S., Miyauchi Y., Hu M.H., Ogura M., Okubo T., Maruyama S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385, 298 (2004)
31.Zhang G.Y., Mann D., Zhang L., Javey A., Li Y.M., Yenilmez E., Wang Q., McVittie J.P., Nishi Y., Gibbons J., Dai H.J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. U.S.A. 102, 16141 (2005)
32.Yakobson B.I., Smalley R.E. Fullerene nanotubes: C-1000000 and beyond. Am. Sci. 85, 324 (1997)
33.Bedewy M., Meshot E.R., Guo H.C., Verploegen E.A., Lu W., Hart A.J. Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113, 20576 (2009)
34.Han J.H., Graff R.A., Welch B., Marsh C.P., Franks R., Strano M.S. A mechanochemical model of growth termination in vertical carbon nanotube forests. ACS Nano. 2, 53 (2008)
35.Mattevi C., Wirth C.T., Hofmann S., Blume R., Cantoro M., Ducati C., Cepek C., Knop-Gericke A., Milne S., Castellarin-Cudia C., Dolafi S., Goldoni A., Schloegl R., Robertson J. In situ x-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J. Phys. Chem. C 112, 12207 (2008)
36.Meshot E.R., Hart A.J. Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 113107 (2008)
37.Puretzky A.A., Eres G., Rouleau C.M., Ivanov I.N., Geohegan D.B. Real-time imaging of vertically aligned carbon nanotube array growth kinetics. Nanotechnology 19, 055605 (2008)
38.Vinten P., Marshall P., Lefebvre J., Finnie P. Distinct termination morphologies for vertically aligned carbon nanotube forests. Nanotechnology 21, 035603 (2010)
39.Yoshida H., Shimizu T., Uchiyama T., Kohno H., Homma Y., Takeda S. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano Lett. 9, 3810 (2009)
40.Harutyunyan A.R., Awasthi N., Jiang A., Setyawan W., Mora E., Tokune T., Bolton K., Curtarolo S. Reduced carbon solubility in Fe nanoclusters and implications for the growth of single-walled carbon nanotubes. Phys. Rev. Lett. 100, 195502 (2008)
41.Latorre N., Romeo E., Cazana F., Ubieto T., Royo C., Villacampa J.J., Monzon A. Carbon nanotube growth by catalytic chemical vapor deposition: A phenomenological kinetic model. J. Phys. Chem. C 114, 4773 (2010)
42.Stadermann M., Sherlock S.P., In J.B., Fornasiero F., Park H.G., Artyukhin A.B., Wang Y.M., De Yoreo J.J., Grigoropoulos C.P., Bakajin O., Chernov A.A., Noy A. Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett. 9, 738 (2009)
43.Xiang R., Yang Z., Zhang Q., Luo G.H., Qian W.Z., Wei F., Kadowaki M., Einarsson E., Maruyama S. Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled? J. Phys. Chem. C 112, 4892 (2008)
44.Einarsson E., Murakami Y., Kadowaki M., Maruyama S. Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46, 923 (2008)
45.Vinten P., Lefebvre J., Finnie P. Kinetic critical temperature and optimized chemical vapor deposition growth of carbon nanotubes. Chem. Phys. Lett. 469, 293 (2009)
46.Carver R.L., Peng H.Q., Sadana A.K., Nikolaev P., Arepalli S., Scott C.D., Billups W.E., Hauge R.H., Smalley R.E. A model for nucleation and growth of single wall carbon nanotubes via the HiPcO process: A catalyst concentration study. J. Nanosci. Nanotechnol. 5, 1035 (2005)
47.Pint C.L., Nicholas N., Pheasant S.T., Duque J.G., Nicholas A., Parra-Vasquez G., Eres G., Pasquali M., Hauge R.H. Temperature and gas pressure effects in vertically aligned carbon nanotube growth from Fe–Mo catalyst. J. Phys. Chem. C 112, 14041 (2008)
48.Eres G., Kinkhabwala A.A., Cui H.T., Geohegan D.B., Puretzky A.A., Lowndes D.H. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J. Phys. Chem. B 109, 16684 (2005)
49.Zhong G., Hofmann S., Yan F., Telg H., Warner J.H., Eder D., Thomsen C., Milne W.I., Robertson J. Acetylene: A key growth precursor for single-walled carbon nanotube forests. J. Phys. Chem. C 113, 17321 (2009)
50.Liu K., Jiang K.L., Feng C., Chen Z., Fan S.S. A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon 43, 2850 (2005)
51.Zhu L.B., Xu J.W., Xiao F., Jiang H.J., Hess D.W., Wong C.P. The growth of carbon nanotube stacks in the kinetics-controlled regime. Carbon 45, 344 (2007)
52.Pint C.L., Nicholas N., Duque J.G., Parra-Vasquez A.N.G., Pasquali M., Hauge R. Recycling ultrathin catalyst layers for multiple single-walled carbon nanotube array regrowth cycles and selectivity in catalyst activation. Chem. Mater. 21, 1550 (2009)
53.Hofmann S., Blume R., Wirth C.T., Cantoro M., Sharma R., Ducati C., Havecker M., Zafeiratos S., Schnoerch P., Oestereich A., Teschner D., Albrecht M., Knop-Gericke A., Schlogl R., Robertson J. State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113, 1648 (2009)
54.Vitos L., Ruban A.V., Skriver H.L., Kollar J. The surface energy of metals. Surf. Sci. 411, 186 (1998)
55.Blonski S., Garofalini S.H. Molecular dynamics simulations of alpha-alumina and gamma-alumina surfaces. Surf. Sci. 295, 263 (1993)
56.Hasegawa K., Noda S. Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth. Appl. Phys. Express 3, 054103 (2010)
57.Charlier J.C., Ebbesen T.W., Lambin P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108 (1996)
58.Pint C.L., Xu Y.Q., Moghazy S., Cherukuri T., Alvarez N.T., Haroz E.H., Mahzooni S., Doorn S.K., Kono J., Pasquali M., Hauge R.H. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment. ACS Nano. 4, 1131 (2010)
59.Ohta Y., Okamoto Y., Irle S., Morokuma K. Rapid growth of a single-walled carbon nanotube on an iron cluster: Density-functional tight-binding-molecular-dynamics simulations. ACS Nano. 2, 1437 (2008)
60.Ohta Y., Okamoto Y., Irle S., Morokuma K. Density-functional tight-binding-molecular-dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster. Carbon 47, 1270 (2009)
61.Yao Y.G., Feng C.Q., Zhang J., Liu Z.F. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673 (2009)
62.Harutyunyan A.R., Chen G.G., Paronyan T.M., Pigos E.M., Kuznetsov O.A., Hewaparakrama K., Kim S.M., Zakharov D., Stach E.A., Sumanasekera G.U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116 (2009)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 225 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.