Skip to main content
×
×
Home

Chain rotation significantly reduces thermal conductivity of single-chain polymers

  • Hao Ma (a1) and Zhiting Tian (a1)
Abstract

Kevlar (polyparaphenylene terephthalamide) and PBDT (poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide))-derivatives have very similar chemical structures with aromatic rings. In this study, thermal conductivities of their single chains were calculated using molecular dynamics simulations. Chain rotation was found to be the key to reducing the thermal conductivity. By introducing a new chain rotation factor (CRF), we can easily quantify chain rotation level of single-chain polymers. We demonstrated that thermal conductivity decreases as the CRF increases. We performed further calculations on phonon properties and unveiled that the small thermal conductivity led by large chain rotation can be attributed to reduced phonon group velocities and shortened phonon mean free paths. Insights obtained in this study can be used for tuning thermal conductivity of various polymers and facilitating their various applications including thermal energy conversion and management.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Chain rotation significantly reduces thermal conductivity of single-chain polymers
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Chain rotation significantly reduces thermal conductivity of single-chain polymers
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Chain rotation significantly reduces thermal conductivity of single-chain polymers
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a)Address all correspondence to this author. e-mail: zhiting@cornell.edu
References
Hide All
1.Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., and van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).
2.Vadivelu, M.A., Kumar, C.R., and Joshi, G.M.: Polymer composites for thermal management: A review. Compos. Interfaces 23, 847 (2016).
3.Droval, G., Feller, J.F., Salagnac, P., and Glouannec, P.: Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching. Smart Mater. Struct. 17, 025011 (2008).
4.Tang, N., Peng, Z., Guo, R., An, M., Chen, X., Li, X., Yang, N., and Zang, J.: Thermal transport in soft PAAm hydrogels. Polymers 9, 688 (2017).
5.Liao, Q., Liu, Z., Liu, W., Deng, C., and Yang, N.: Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites. Sci. Rep. 5, 16543 (2015).
6.Ma, H. and Tian, Z.: Effects of polymer topology and morphology on thermal transport: A molecular dynamics study of bottlebrush polymers. Appl. Phys. Lett. 110, 091903 (2017).
7.Choy, C.L.: Thermal conductivity of polymers. Polymer 18, 984 (1977).
8.Choy, C.L., Chen, F.C., Luk, W.H.: Thermal conductivity of oriented crystalline polymers. J. Polym. Sci., Polym. Phys. Ed. 18, 1187 (1980).
9.Choy, C.L., Luk, W.H., and Chen, F.C.: Thermal conductivity of highly oriented polyethylene. Polymer 19, 155 (1978).
10.Hansen, D., Bernier, G.A.: Thermal conductivity of polyethylene: The effects of crystal size, density and orientation on the thermal conductivity. Polymer Engineering & Science. 12, 204 (1972).
11.Henry, A. and Chen, G.: High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).
12.Shen, S., Henry, A., Tong, J., Zheng, R., and Chen, G.: Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251 (2010).
13.Wang, X., Ho, V., Segalman, R.A., and Cahill, D.G.: Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937 (2013).
14.Zhang, T., Wu, X., and Luo, T.: Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118, 21148 (2014).
15.Liu, J. and Yang, R.: Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012).
16.Reed, R.P. and Golda, M.: Cryogenic properties of unidirectional composites. Cryogenics 34, 909 (1994).
17.Ventura, G. and Martelli, V.: Thermal conductivity of Kevlar 49 between 7 and 290K. Cryogenics 49, 735 (2009).
18.Yu, Z., He, Y., Wang, Y., Madsen, L.A., and Qiao, R.: Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322 (2017).
19.See http://accelrys.com/products/materials-studio/, for Accelrys Software and M.S.v8. Inc.
20.Hill, J-R. and Sauer, J.: Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates. J. Phys. Chem. 99, 9536 (1995).
21.Chang, K-S., Yoshioka, T., Kanezashi, M., Tsuru, T., and Tung, K-L.: A molecular dynamics simulation of a homogeneous organic-inorganic hybrid silica membrane. Chem. Commun. 46, 9140 (2010).
22.Ma, H., O’Donnel, E., and Tian, Z.: Tunable thermal conductivity of π-conjugated two-dimensional polymers. Nanoscale (2018).
23.Ma, H. and Tian, Z.: Significantly high thermal rectification in an asymmetric polymer molecule driven by diffusive versus ballistic transport. Nano Lett. 18, 43 (2018).
24.Ma, H. and Tian, Z.: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films. Appl. Phys. Lett. 107, 073111 (2015).
25.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
26.Green, M.S.: Markoff random processes and the statistical mechanics of time‐dependent phenomena. J. Chem. Phys. 20, 1281 (1952).
27.Green, M.S.: Markoff random processes and the statistical mechanics of time‐dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954).
28.Nilakantan, G., Obaid, A.A., Keefe, M., and Gillespie, J.W.: Experimental evaluation and statistical characterization of the strength and strain energy density distribution of Kevlar KM2 yarns: Exploring length-scale and weaving effects 45, 1749 (2011).
29.Wang, Y., Gao, J., Dingemans, T.J., and Madsen, L.A.: Molecular alignment and ion transport in rigid rod polyelectrolyte solutions. Macromolecules 47, 2984 (2014).
30.Babaei, H., Wilmer, C.E.: Mechanisms of heat transfer in porous crystals containing adsorbed gases: Applications to metal-organic frameworks. Phys. Rev. Lett. 116 (2016).
31.Robbins, A.B. and Minnich, A.J.: Crystalline polymers with exceptionally low thermal conductivity studied using molecular dynamics. Appl. Phys. Lett. 107, 201908 (2015).
32.Qiu, B. and Ruan, X.: Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 100, 193101 (2012).
33.Qian, X., Gu, X., and Yang, R.: Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Appl. Phys. Lett. 108, 063902 (2016).
34.He, J., Kim, K., Wang, Y., and Liu, J.: Strain effects on the anisotropic thermal transport in crystalline polyethylene. Appl. Phys. Lett. 112, 051907 (2018).
35.Li, S., Yu, X., Bao, H., and Yang, N.: High thermal conductivity of bulk epoxy resin by bottom-up parallel-linking and strain: A molecular dynamics study. J. Phys. Chem. C 122, 13140 (2018).
36.Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).
37.Peter D, H.: Kernel estimation of a distribution function. Commun. Stat. Theor. Methods 14, 605 (1985).
38.Falkovsky, L.: Phonon dispersion in graphene. J. Exp. Theor. Phys. 105, 397 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed