Skip to main content Accessibility help

Challenges to the use of ion irradiation for emulating reactor irradiation

  • Gary S. Was (a1)

Development of new materials for current and advanced reactor concepts is hampered by long lead times and high cost of reactor irradiations coupled with the paucity of test reactors. Ion irradiation offers many advantages for emulating the microstructures and properties of materials irradiated in reactors but also poses many challenges. Nevertheless, there is a growing body of evidence, primarily for light ion (proton) irradiation showing that many, if not all of the features of the irradiated microstructure and properties, can be successfully emulated by careful selection of irradiation parameters based on differences in the damage processes between ion and neutron irradiation. While much less has been done to benchmark heavy- or self-ion irradiation, recent work shows that under certain conditions, the complete suite of features of the irradiated microstructure can be emulated. This study summarizes the contributions of ion irradiation to our understanding of irradiation effects, the options for emulating radiation effects in reactors, and experience with both proton irradiation and heavy ion irradiation.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Djamel Kaoumi

Hide All
1. Guerin, Y., Was, G.S., and Zinkle, S.J.: Materials challenges for advanced nuclear energy systems. MRS Bulletin 34(1), 10 (2009).
2. Lee, E.H., Maziasz, P.J., and Rowcliffe, A.F.: The structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments. In Phase Stability During Irradiation, Holland, J.R., Mansur, L.K., and Potter, D.I. eds.; The Metallurgical Society of AIME: New York, 1981; p. 191.
3. Okamoto, P.R. and Rehn, L.E.: Radiation induced segregation in binary and ternary alloys. J. Nucl. Mater. 83(1), 2 (1979).
4. Nelson, R.S., Hudson, J.A., and Mazey, D.J.: The stability of precipitates in an irradiation environment. J. Nucl. Mater. 44(3), 318 (1972).
5. Boothby, R.M.: The microstructure of fast neutron irradiated Nimonic PE16. J. Nucl. Mater. 230(2), 148 (1996).
6. Sklad, P.S., Clausing, R.E., and Bloom, E.E.: Effects of neutron irradiation on microstructure and mechanical properties of nimonic PE-16. In Irradiation Effects on the Microstructure and Properties of Metals, Shober, F.R. ed.; American Society for Testing and Materials: Philadelphia, PA, 1976; p. 139.
7. Marwick, A.D.: Solute segregation and precipitate stability in irraiated alloys. Nucl. Instrum. Methods 182183, 827 (1981).
8. Rowcliffe, A.F., Mansur, L.K., Hoelzer, D.T., and Nanstad, R.K.: Perspectives on radaition effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 392(2), 341 (2009).
9. Was, G.S. and Averback, R.S.: Radiation damage using ion beams. In Comprehensive Nuclear Materials, Vol. 1, Konings, R.J.M. ed.; Elsevier: Amsterdam, 2012; p. 195.
10. Jung, P., Chaplin, R.L., Fenzl, H.J.. Reichelt, K., and Wombacher, P.: Anisotropy of the threshold energy for production of frenkel pairs in copper and platinum. Phys. Rev. B 8, 553 (1973).
11. Vajda, P.: Anisotropy of electron radiation damage in metal crystals. Rev. Mod. Phys. 49, 481 (1977).
12. King, W.E., Merkle, K.L., and Meshii, M.: Determination of the threshold surface for copper using in situ electrical resistivity measurements in the high voltage electron microscope. Phys. Rev. B 23, 6319 (1981).
13. Gibson, J.B., Goland, A.N., Milgram, M., and Vineyard, G.H.: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).
14. Lucasson, P.: The production of Frenkel defects. In Fundamental Aspects of Radiation Damage in Metals, Robinson, M.T. and Young, F.W. Jr. eds.; ERDA Report CONF-751006, 1975; p. 42.
15. Corbett, J.W., Smith, R.B., and Walker, R.M.: Recovery of electron-irradiated copper. I. Close pair recovery. Phys. Rev. 114, 1452 (1959).
16. Burger, G., Isebeck, K., Volkl, J., Schilling, W., and Wenzl, H.: Low-temperature recovery spectra of neuron-irradiated metals. Z. Angew. Phys. 36, 3356 (1965).
17. Garr, K.R. and Sosin, A.: Recovery of electron-irradiated aluminum and aluminum alloys. II. Stage II. Phys. Rev. 162, 669 (1967).
18. Ehrhart, P.: Introduction for atomic defects and diffusion, atomic defects in metals. In Landolt-Bornstein New Series, Group III, Vol. 25, Ullmaier, H. ed.; Springer: Berlin, 1991; p. 115.
19. Averback, R.S. and de la Rubia, T.D.: Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281 (1997).
20. Rehn, L.E., Okamoto, P.R., and Averback, R.S.: Relative efficiencies of different ions for producing freely migrating defects. Phys. Rev. B 30, 3073 (1984).
21. Wei, L.C., Lang, E., Flynn, C.P., and Averback, R.S.: Freely migrating defects in ion-irradiated Cu3Au. Appl. Phys. Lett. 75, 805 (1999).
22. Fielitz, P., Macht, M-P., Naundorf, V., and Wollenberger, H.: Atom transport under ion irradiation. J. Nucl. Mater. 251, 123 (1997).
23. Okamoto, P.R., Harkness, S.D., and Laidler, J.J.: Solute segregation to voids during electron irradiation. ANS Trans. 16, 70 (1973).
24. Okamoto, P.R. and Wiedersich, H.: Segregation of alloying elements to free surfaces during irradiation. J. Nucl. Mater. 53, 336 (1974).
25. Rehn, L.E.: Surface modification and radiation-induced segregation. In Metastable Materials Formation by Ion Implantation, Picraux, S.T. and Choyke, W.J. eds.; Elsevier Science: New York, 1982; p. 17.
26. Schmitz, G., Ewert, J.C., Harbsmeier, F., Uhrmacher, M., and Haider, F.: Phase stability of decomposed Ni-Al alloys under irradaition. Phys. Rev. B. 63, 224113 (2001).
27. Enrique, R.A., Nordland, K., Averback, R.S., and Bellon, P.: Simulation of dynamical stabilization of Ag-Cu nanocomposites by ion beam processing. J Appl. Phys. 93, 2917 (2003).
28. Enrique, R.A. and Bellon, P.: Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84, 2885 (2000).
29. Averback, R.S.: Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49 (1994).
30. Souidi, A., Hou, M., Becquart, C.S., Malerba, L., Domain, C., and Stoller, R.E.: On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419, 122 (2011).
31. Garner, F.A., Powell, R.W., Keefer, D.W., Pard, A.G., Garr, K.R., Nakata, M.M., Lauritzen, T., Bell, W.L., Johnston, W.G., Appleby, W.K., Diamond, S., Baron, M., Chickering, R., Bajaj, R., Bleiberg, M.L., Sprague, J.A., Smidt, F.A., and Westmoreland, J.E.: Summary report on the alloy development intercorrelation program experiment. In Proceedings of the Workshop of Neutron and Charged Particle Damage, CONF-760673, Oak Ridge National Laboratory: Oak Ridge, TN, 1976; p. 147.
32. Mansur, L.K.: Void swelling in metals and alloys under irradiation: An assessment of the theory. Nucl. Technol. 40, 5 (1978).
33. Mansur, L.K.: Correlation of neutron and heavy-ion damage: II. The predicted temperature shift with swelling changes in radiation dose rate. J. Nucl. Mater. 78 156 (1978).
34. Mansur, L.K.: Theory of transitions in dose dependence of radiation effects in structural alloys. J. Nucl. Mater. 206 306 (1993).
35. Ezawa, T. and Wakai, E.: Radiation-induced solute segregation in Al and Ni binary alloys under HVEM irradiation. Ultramicroscopy 39, 187 (1991).
36. Ashworth, J.A., Norris, D.I.R., and Jones, I.P.: Radiation-induced segregation in Fe-20Cr-25Ni-Nb based austenitic stainless steels. J. Nucl. Mater. 189, 289 (1992).
37. Wakai, E.: Radiation-induced segregation in Ni alloys by deuterium ion irradiations. Materials Trans. JIM 33(10), 884 (1992).
38. Whitley, J.B.: Thesis for Doctor of Philosophy - Nuclear Engineering, University of Wisconsin-Madison, 1978.
39. Garner, F.A.: Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J. Nucl. Mater. 117, 177 (1983).
40. Lee, E.H., Mansur, L.K., and Yoo, M.H.: Spatial variation in void volume during charged particle bombardment—The effects of injected interstitials. J. Nucl. Mater. 8586, 577 (1979).
41. Brailsford, A.D. and Mansur, L.K.: Effect of self-ion injection in simulation studies of void swelling. J. Nucl. Mater. 71, 110 (1977).
42. Was, G.S. and Allen, T.R.: Radiation damage from different particle types. In Radiation Effects in Solids, in NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 235, Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P. eds.; Springer: Berlin, 2007; p. 65.
43. Gan, J. and Was, G.S.: Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with Protons: Comparison with neutron-irradiated microstructures. J. Nucl. Mater. 297, 161 (2001).
44. Bruemmer, S.M., Edwards, D., and Simonen, E.: Characterization on Neutron-Irradiated 300 Series Stainless Steels to Assess Mechanisms of Irradiation-Assisted Stress Corrosion Cracking; EPRI Report 101496; Electric Power Research Institute: Palo Alto, CA, 2001.
45. Zinkle, S.J., Maziasz, P.J., and Stoller, R.E.: Dose dependence of the microstructural evolution in neutron-irradiated austenitic steel. J. Nucl. Mater. 206, 266 (1993).
46. Odette, G.R. and Lucas, G.E.: The effects of intermediated temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels. J. Nucl. Mater. 179, 572 (1991).
47. Maziasz, P.: Effects of Helium Content on Microstructural Development in Type 316 Stainless Steel Under Neutron Irradiation; Oak Ridge National Laboratory Report, ORNL-6121; Oak Ridge, TN, 1985.
48. Greenwood, L.R.: Fusion Reactor Materials Semiannual Progress Report for Period ending March 31, 1989, Office of Fusion Energy; DOE/ER-0313/6; 1989; p. 23.
49. Gan, J., Was, G.S., and Stoller, R.E.: Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor conditions. J. Nucl. Mater. 299, 53 (2001).
50. Sencer, B.H., Was, G.S., Sagisaka, M., Isobe, Y., Bond, G.M., and Garner, F.A.: Proton irradiation emulation of microstructural evolution of solution annealed 304 and cold-worked 316 stainless steels during irradiation in PWRs. J. Nucl. Mater. 323, 18 (2003).
51. Garner, F.A.: Chapter 6: Irradiation performance of cladding and structural steels in liquid metal reactors. In Materials Science and Technology: A Comprehensive Treatment, Vol. 10A, Frost, B.R.T. ed.; VCH: New York, 1994; p. 419.
52. Fujii, K., Fukuya, K., Furutani, G., Torimaru, T., Kohyama, A., and Kotah, Y.: Swelling in 316 stainless steels irradiated to 53 dpa in a PWR. In Proceedings of the Tenth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ford, F.P., Was, G.S., and Nelson, J.L. eds.; NACE International: Houston, TX, 2000.
53. Edwards, D.J., Simonen, E.P., and Bruemmer, S.M.: Evolution of fine-scale defects in stainless steels neutron-irradiated at 275°C. J. Nucl. Mater. 317, 13 (2003).
54. Tournadre, L., Onimus, F., Bechade, J-L., Gibon, D., Cloue, J-M., Mardon, J-P., Feaugas, X., Toader, O., and Bachelet, C.: Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4. J. Nucl. Mater. 425, 76 (2012).
55. Tournadre, L., Onimus, F., Bechade, J-L., Gibon, D., Cloue, J-M., Mardon, J-P., and Feaugas, X.: Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys. J. Nucl. Mater. 441, 222 (2013).
56. Griffiths, M.: Microstructure evolution in Zr alloys during irradiation: Dose, dose rate, and impurity dependence. In Zirconium in the Nuclear Industry: Fifteenth international Symposium STP 1505, Bruce, K., Magnus, L., eds. American Society for Testing and Materials: Philadelphia, PA, 2009; p. 19.
57. De Carlan, Y., Gilbon, D., Griffiths, M., Lemaignan, C., and Regnard, C.: Influence of iron in the nucleation of <c> component dislocation loops in irradiated Zircaloy-4. In Zirconium in the Nuclear Industry: Eleventh International Symposium, STP 1295, Bradley, E.R., Sabol, G.P., eds. American Society for Testing and Materials: Philadelphia, PA, 1996; p. 638.
58. Griffiths, M. and Gilbert, R.W.: The formation of c-component defects in zirconium alloys during neutron irradiation. J. Nucl. Mater. 150(2), 169 (1987).
59. Griffiths, M., Gilbert, R.W., Fidleris, V., Tucker, R.P., and Adamson, R.B.: Neutron damage in zirconium alloys irradiated at 644 to 710K. J. Nucl. Mater. 150(2), 159 (1987).
60. Fukuda, T., Aoki, T., Isobe, Y., Hasegawa, A., and Abe, K.: Microchemical and microstructural changes of austenitic steels caused by proton irradiation following helium implantation. J. Nucl. Mater. 258263, 1694 (1998).
61. Was, G.S. and Allen, T.: Radiation induced segregation in multicomponent alloys: Effect of particle type. Mater. Charact. 32(4), 239 (1994).
62. Asano, K., Fukuya, K., Nakata, K., and Kodama, M.: Changes in grain boundary composition induced by neutron irradiation on austenitic stainless steels. In Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Cubicciotti, D., Simonen, E.P., and Gold, R. eds.; American Nuclear Society, La Grange Park, IL, 1992; p. 838.
63. Was, G.S., Busby, J.T., Gan, J., Kenik, E.A., Jenssen, A., Bruemmer, S.M., Scott, P.M., and Andresen, P.L.: Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 300, 198 (2002).
64. Scott, P., Materials Reliability Program: A Review of the Cooperative Irradiation Assisted Stress Corrosion Cracking Research Program (MRP-98); 1002807; EPRI, Palo Alto, CA, 2003.
65. Stephenson, K.J. and Was, G.S.: Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons. J. Nucl. Mater. 456, 8598 (2015).
66. Busby, J.T. and Was, G.S., The Use of Proton Irradiation to Determine IASCC Mechanisms in Light Water Reactors: Phase 2: Commercial Alloys; 1009898; EPRI, Palo Alto, CA, 2005.
67. Busby, J.T. and Was, G.S.: The Use of Proton Irradiation to Determine IASCC Mechanisms in Light Water Reactors: Solute Addition Alloys; 1007440; EPRI, Palo Alto, CA, 2003.
68. Edwards, D.J., Schemer-Kohrn, A., and Bruemmer, S.: Characterization of Neutron-Irradiated 300-Series Stainless Steels; EPRI Report 1009896; Electric Power Research Institute: Palo Alto, CA, 2006.
69. Edwards, D.J.: Personal communication, 2012.
70. Jiao, Z., Was, G.S., and Busby, J.T.: The role of localized deformation on IASCC of proton-irradiated austenitic stainless steel. In 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R., Busby, J.T., and King, P.J. eds.; CANS: Whistler, British Columbia, 2007; p. 1.
71. Cann, C.D., So, C.B., Styles, R.C., and Coleman, C.E.: Precipitation in Zr-2.5Nb enhanced by proton irradiation. J. Nucl. Mater. 205, 267 (1993).
72. Urbanic, V.F. and Gilbert, R.W.: Effect of microstructure on the corrosion of Zr-2.5%Nb alloys. In Proceedings of the On fundamental Aspects of Corrosion on Zirconium-Based Alloys in Water Reactor Environment, International atomic energy Agency: Vienna, 1990; p. 262. IWGFPT/34.
73. Coleman, C.E., Gilbert, R.W., Carpenter, G.J.C., and Weatherly, G.C.: Precipitation in Zr-2.5 wt% Nb during neutron irradiation. In Phase Stability During Irradiation, Holland, J.R., Mansur, L.K., and Potter, D.I. eds.; The Metallurgical Society of AIME: New York, 1981; p. 587.
74. Shen, H.H., Peng, S.M., Xiang, X., Naab, F.N., Sun, K., and Zu, X.T.: Proton irradiation effects on the precipitate in a Zr-1.6Sn-0.6Nb-0.2Fe-0.1Cr alloy. J. Nucl. Mater. 452, 335 (2014).
75. Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190 (1988).
76. Zu, X.T., Sun, K., Atzmon, M., Wang, L.M., You, L.P., Wan, F.R., Busby, J.T., Was, G.S., and Adamson, R.B.: Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos. Mag. 85(4–7), 649 (2005).
77. Francis, E.M., Harte, A., Frankel, P., Haigh, S.J., Jadernas, D., Romero, J., Hallstadius, L., and Preuss, M.: Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope. J. Nucl. Mater. 454, 387 (2014).
78. Higgy, H.R. and Hammad, F.H.: Effect of fast-neutron irradiation on mechanical properties of stainless steels: AISI types 304, 316 and 347. J. Nucl. Mater. 55, 177 (1975).
79. Hamilton, M.L., Garner, F.A., Hankin, G.L., Faulkner, R.G., and Toloczko, M.B.: Neutron-induced evolution of mechanical properties of 20% cold-worked 316 stainless steel as observed in both miniature tensile and TEM shear punch specimens. In Effects of Radiation on Materials: 19th International Symposium, ASTM STP 1366, Hamilton, M.L., Kumar, A.S., Rosinski, S.T., and Grossbeck, M.L. eds.; American Society for Testing and Materials, West Conshohocken, PA, 2000; p. 1003.
80. Busby, J.T., Hash, M.C., and Was, G.S.: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267 (2005).
81. Was, G.S., Hash, M., and Odette, G.R.: Proton irradiation of model and commercial pressure vessel steels. Philos. Mag. 85(4–7), 703 (2005).
82. Odette, G.R., Yamamoto, T., and Klingensmith, D.: A Compilation of Hardening and Microstructural Evolution Data for Ferritic Model Alloys Irradiated in the UCSB IVAR Program, UCSB-NRC-LR-04/2, 2004.
83. Alexander, D.E., Rehn, L.E., Odette, G.R., Lucas, G.E., Klingensmith, D., and Gragg, D.: Understanding the role of defect production in radiation embrittlement of reactor pressure vessels. In Proceedings of the Ninth International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Bruemmer, S.M., Ford, F.P., and Was, G.S. eds.; Minerals Metals & Materials Society: Warrendale, PA, 1999; p. 827.
84. Shimada, S. and Nagai, M.: Evaluation of the resistance of irradiated zirconium-liner cladding to iodine-induced stress corrosion cracking. J. Nucl. Mater. 114, 305 (1983).
85. Farrell, K., Byun, T.S., and Hashimoto, N.: Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 335, 471 (2004).
86. Jiao, Z., Busby, J.T., and Was, G.S.: Deformation microstructure of proton-irradiated stainless steels. J. Nucl. Mater. 361, 218 (2007).
87. Jiao, Z. and Was, G.S.: Localized deformation, and IASCC initiation in austenitic stainless steels. J. Nucl. Mater. 382, 203 (2008).
88. Jiao, Z. and Was, G.S.: The role of irradiated microstructure in the localized deformation of austenitic stainless steels. J. Nucl. Mater. 407, 34 (2010).
89. Jiao, Z. and Was, G.S.: Impact of localized deformation on IASCC in austenitic stainless steels. J. Nucl. Mater. 408, 246 (2011).
90. Jiao, Z., McMurtrey, M.D., and Was, G.S.: Strain-induced precipitate dissolution in an irradiated austenitic alloy. Scr. Mater. 65(2), 159 (2011).
91. Jiao, Z., Was, G.S., Miura, T., and Fukuya, K.: Aspects of ion irradiations to study localized deformation in austenitic stainless steels. J. Nucl. Mater. 425, 328 (2014).
92. Fournier, L., Serres, A., Auzoux, Q., Leboulch, D., and Was, G.S.: Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4. J. Nucl. Mater. 384, 38 (2009).
93. Onimus, F., Monnet, I., Bechade, J.L., Prioul, C., and Pilvin, P.: A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys. J. Nucl. Mater. 328, 165 (2004).
94. Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., and Adamson, R.B.: Characterization of neutron irradiation damage in zirconium alloys—An international “round-robin” experiment. J. Nucl. Mater. 79, 379 (1979).
95. Scholz, R. and Matera, R.: Proton irradiation creep of Inconel 718 at 300°C. J. Nucl. Mater. 283287, 414 (2000).
96. Baicry, J., Mardon, J.P., and Morize, P.: Effect of irradiation at 588K on mechanical properties and deformation behavior of zirconium alloy strip. In Proceedings of the Seventh International Symposium on Zirconium in the Nuclear Industry, ASTM STP 939, Adamson, R.B. and Van Swam, L.F.P. eds.; American Society for Testing and Materials: West Conshohocken, PA, 1987; p. 101.
97. Sencer, B.H., Was, G.S., Yuya, H., Isobe, Y., Sagisaka, M., and Garner, F.A.: Cross-sectional TEM and X-ray examination of radiation-induced stress relaxation of peened stainless steel surfaces. J. Nucl. Mater. 336, 314 (2005).
98. Xu, C. and Was, G.S.: Low dose proton irradiated creep of FM steel T91. J. Nucl. Mater. 459, 183 (2015).
99. Campbell, A.A., Campbell, K.B., and Was, G.S.: Proton irradiation-induced creep of ultra-fine grain graphite. Carbon 60, 410 (2013).
100. Wang, P. and Was, G.S.: Oxidation of Zircaloy-4 during in-situ proton irradiation and corrosion in PWR primary water. J. Mater. Res. DOI: 10.1557/jmr.2014.408.
101. Allison, C.M.: MATPRO—A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, EGG-2720, U.S. NRC, Washington, DC, Vol. 4, p. 4-2034-231.
102. Was, G.S., Jiao, Z., Beckett, E., Sun, K., Monterrosa, A.M., Maloy, S.A., Anderoglu, O., Sencer, B.H., and Hackett, M.: Emulation of reactor irradiation damage using ion beams. Scr. Mater. 88, 33 (2014).
103. Sencer, B.H., Kennedy, J.R., Cole, J.I., Maloy, S.A., and Garner, F.A.: Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443°C. J. Nucl. Mater. 393, 235 (2009).
104. Ziegler, J.F., Ziegler, M.D., and Biersak, J.P.: SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).
105. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).
106. Was, G.S., Jiao, Z., Van der ven, A., Buremmer, S., and Edwards, D.: Aging and Embrittlement of High Fluence Stainless Steels, Final Report; NEUP Project CFP-09-767; U.S. DOE, Washington, DC, 2012.
107. Jiao, Z. and Was, G.S.: Precipitate behavior in self-ion irradiated stainless steels at high doses. J. Nucl. Mater. 449, 200 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed