Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T11:20:53.930Z Has data issue: false hasContentIssue false

Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

Published online by Cambridge University Press:  20 May 2015

Maik Lang*
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Cameron L. Tracy
Affiliation:
Department of Earth and Environmental Sciences; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Raul I. Palomares
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Fuxiang Zhang
Affiliation:
Department of Earth and Environmental Sciences; and Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Daniel Severin
Affiliation:
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt 64291, Germany
Markus Bender
Affiliation:
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt 64291, Germany
Christina Trautmann
Affiliation:
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt 64291, Germany; and Technische Universität Darmstadt, Darmstadt 64287, Germany
Changyong Park
Affiliation:
High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
Vitali B. Prakapenka
Affiliation:
Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
Vladimir A. Skuratov
Affiliation:
Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980, Russia
Rodney C. Ewing
Affiliation:
Department of Geological and Environmental Sciences, School of Earth Sciences, Stanford University, Stanford 94305, USA
*
a)Address all correspondence to this author. e-mail: mlang2@utk.edu
Get access

Abstract

Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2−xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. This is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Djamel Kaoumi

References

REFERENCES

Grimes, R.W., Konings, R.J.M., and Edwards, L.: Greater tolerance for nuclear materials. Nat. Mater. 7, 683685 (2008).Google Scholar
Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13, 2432 (2010).Google Scholar
Sah, D.N., Viswanathan, U.K., Ramadasan, E., Unnikrishnan, K., and Anantharaman, S.: Post irradiation examination of thermal reactor fuels. J. Nucl. Mater. 383, 4553 (2008).CrossRefGoogle Scholar
Fujino, T., Shiratori, T., Sato, N., Fukuda, K., Yamada, K., and Serizawa, H.: Post-irradiation examination of high burnup Mg doped UO2 in comparison with undoped UO2, Mg-Nb doped UO2 and Ti doped UO2 . J. Nucl. Mater. 297, 176205 (2001).CrossRefGoogle Scholar
Tanaka, K., Miwa, S., Sekine, N., Yoshimochi, H., Obayashi, H.i, and Koyama, S.: Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation. J. Nucl. Mater. 440, 480488 (2013).Google Scholar
Nitani, N., Kuramoto, K., Yamashita, T., Ichise, K., Ono, K., and Nihei, Y.: Post-irradiation examination on particle dispersed rock-like oxide fuel. J. Nucl. Mater. 352, 365371 (2006).CrossRefGoogle Scholar
Noirot, J., Desgranges, L., and Lamontagne, J.: Detailed characterisations of high burn-up structures in oxide fuels. J. Nucl. Mater. 372, 318339 (2008).Google Scholar
Shi, W.-Q., Yuan, L.-Y., Wang, C.-Z., Wang, L., Mei, L., Xiao, C.-L., Zhang, L., Li, Z.-J., Zhao, Y.-L., and Chai, Z.-F.: Exploring Actinide Materials Through Synchrotron Radiation Techniques. Adv. Mater. 26, 78077848 (2014).CrossRefGoogle ScholarPubMed
Rothe, J., Butorin, S., Dardenne, K., Denecke, M.A., Kienzler, B., Löble, M., Metz, V., Seibert, A., Steppert, M., Vitova, T., Walther, C., and Geckeis, H.: The INE-Beamline for actinide science at ANKA. Rev. Sci. Instrum. 83, 043105 (2012).Google Scholar
Dardenne, K., Brendebach, B., Denecke, M.A., Liu, X., Rothe, J., and Vitova, T.: New developments at the INE-Beamline for actinide research at ANKA. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.Google Scholar
Solari, P.L., Schlutig, S., Hermange, H., and Sitaud, B.: MARS, a new beamline for radioactive matter studies at SOLEIL. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.Google Scholar
Konishi, H., Yokoya, A., Shiwaku, H., Motohashi, H., Makita, T., Kashihara, Y., Hashimoto, S., Harami, T., Sasaki, T.A., Maeta, H., Ohno, H., Maezawa, H., Asaoka, S., Kanaya, N., Ito, K., Usami, N., and Kobayashi, K.: Synchrotron radiation beamline to study radioactive materials at the photon factory. Nucl. Instrum. Methods Phys. Res., Sect. A 372, 322332 (1996).CrossRefGoogle Scholar
Matz, W., Schell, N., Bernhard, G., Prokert, F., Reich, T., Claußner, J., Oehme, W., Schlenk, R., Dienel, S., Funke, H., Eichhorn, F., Betzl, M., Prühl, D., Strauch, U., Hüttig, G., Krug, H., Neumann, W., Brendler, V., Reichel, P., Denecke, M.A., and Nitsche, H.: ROBL—A CRG beamline for radiochemistry and materials research at the ESRF. J. Synchrotron Radiat. 6, 10761085 (1999).CrossRefGoogle Scholar
Pan, X., Wu, X., Mo, K., Chen, X., Almer, J., Ilavsky, J., Haeffner, D.R., and Stubbins, J.F.: Lattice strain and damage evolution of 9-12%Cr ferritic/martensitic steel during in situ tensile test by X-ray diffraction and small angle scattering. J. Nucl. Mater. 407, 1015 (2010).Google Scholar
Mo, K., Zhou, Z., Miao, Y., Yun, D., Tung, H.-M., Zhang, G., Chen, W., Almer, J., and Stubbins, J.F.: Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel. J. Nucl. Mater. 455, 376381 (2014).CrossRefGoogle Scholar
Wang, L., Li, M., and Almer, J.: In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 440, 8190 (2013).Google Scholar
Kuri, G., Cammelli, S., Degueldre, C., Bertsch, J., and Gavillet, D.: Neutron induced damage in reactor pressure vessel steel: An X-ray absorption fine structure study. J. Nucl. Mater. 385, 312318 (2009).Google Scholar
Daum, R.S., Chu, Y.S., and Motta, A.T.: Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J. Nucl. Mater. 392, 453463 (2009).CrossRefGoogle Scholar
Couet, A., Motta, A.T., de Gabory, B., and Cai, Z.: Microbeam X-ray absorption near-edge spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers. J. Nucl. Mater. 452, 614627 (2014).Google Scholar
Polatidis, E., Frankel, P., Wei, J., Klaus, M., Comstock, R.J., Ambard, A., Lyon, S., Cottis, R.A., and Preuss, M.: Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432, 102112 (2013).Google Scholar
Mieszczynski, C., Kuri, G., Degueldre, C., Martin, M., Bertsch, J., Borca, C.N., Grolimund, D., Delafoy, Ch., and Simoni, E.: Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction. J. Nucl. Mater. 444, 274282 (2014).Google Scholar
Degueldre, C., Bertsch, J., Kuri, G., and Martin, M.: Nuclear fuel in generation II and III reactors: Research issues related to high burn-up. Energy Environ. Sci. 4, 16511661 (2011).CrossRefGoogle Scholar
Degueldre, C., Mieszczynski, C., Borca, C., Grolimund, D., Martin, M., and Bertsch, J.: X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 116122 (2014).Google Scholar
Ice, G.E. and Specht, E.D.: Microbeam, timing, and signal-resolved studies of nuclear materials with synchrotron X-ray sources. J. Nucl. Mater. 425, 233237 (2012).Google Scholar
Was, G.S. and Averback, R.S.: 1.07-Radiation Damage Using Ion Beams. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 195221.CrossRefGoogle Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: In Ion Beam Science: Solved and Unsolved Problems, Sigmund, P. ed.; The Royal Danish Academy of Sciences and Letters: Copenhagen, 2006; pp. 263292.Google Scholar
Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25, 13441351 (2010).Google Scholar
Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C.: Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth Planet. Sci. Lett. 302, 227235 (2011).Google Scholar
Li, W.X., Lang, M., Gleadow, A.J.W., Zdorovets, M., and Ewing, R.C.: Thermal annealing of unetched fission tracks in apatite. Earth Planet. Sci. Lett. 321322, 121127 (2012).Google Scholar
Li, W.X., Kluth, P., Schauries, D., Rodriguez, M.D., Lang, M., Zhang, F.X., Zdorovets, M., Trautmann, C., and Ewing, R.C.: Effect of orientation on ion track formation in apatite and zircon. Am. Mineral. 99, 11271132 (2014).CrossRefGoogle Scholar
Afra, B., Lang, M., Rodriguez, M.D., Zhang, J.M., Giulian, R., Kirby, N., Ewing, R.C., Trautmann, C., Toulemonde, M., and Kluth, P.: Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011).Google Scholar
Schauries, D., Afra, B., Bierschenk, T., Lang, M., Rodriguez, M.D., Trautmann, C., Li, W., Ewing, R.C., and Kluth, P.: The shape of ion tracks in natural apatite. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 117120 (2014).CrossRefGoogle Scholar
Rodriguez, M.D., Li, W.X., Chen, F., Trautmann, C., Bierschenk, T., Afra, B., Schauries, D., Ewing, R.C., Mudie, S.T., and Kluth, P.: SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 150153 (2014).CrossRefGoogle Scholar
Hémon, S., Dufour, C., Berthelot, A., Gourbilleau, F., Paumier, E., and Bégin-Collin, S.: Structural transformation in two yttrium oxide powders irradiated with swift molybdenum ions. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 339344 (2000).Google Scholar
Benyagoub, A.: Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72, 094114 (2005).CrossRefGoogle Scholar
Grygiel, C., Lebius, H., Bouffard, S., Quentin, A., Ramillon, J.M., Madi, T., Guillous, S., Been, T., Guinement, P., Lelièvre, D., and Monnet, I.: Online in situ X-ray diffraction setup for structural modification studies during swift heavy ion irradiation. Rev. Sci. Instrum. 83, 013902 (2012).Google Scholar
Lang, M., Zhang, F.X., Li, W.X., Severin, D., Bender, M., Klaumünzer, S., Trautmann, C., and Ewing, R.C.: Swift heavy ion-induced amorphization of CaZrO3 perovskite. Nucl. Instrum. Methods Phys. Res., Sect. B 286, 271276 (2012).Google Scholar
Studer, F., Houpert, Ch., Toulemonde, M., and Dartyges, E.: Local environment of iron in heavy ion-irradiated amorphous magnetic oxides by Mössbauer and X-ray absorption spectroscopy. J. Solid State Chem. 91, 238249 (1991).Google Scholar
Ohno, H., Iwase, A., Matsumura, D., Nishihata, Y., Mizuki, J., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on effects of swift heavy ion irradiation in cerium oxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 30133017 (2008).CrossRefGoogle Scholar
Iwase, A., Ohno, H., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 969972 (2009).Google Scholar
Ishikawa, N., Sonoda, T., Okamoto, Y., Sawabe, T., Takegahara, K., Kosugi, S., and Iwase, A.: X-ray study of radiation damage in UO2 irradiated with high-energy heavy ions. J. Nucl. Mater. 419, 392396 (2011).CrossRefGoogle Scholar
Tahara, Y., Shimizu, K., Ishikawa, N., Okamoto, Y., Hori, F., Matsui, T., and Iwase, A.: Study on effects of energetic ion irradiation in Gd2O3-doped CeO2 by means of synchrotron radiation X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 5357 (2012).Google Scholar
Lang, M., Zhang, F.X., Zhang, J.M., Wang, J.W., Schuster, B., Trautmann, C., Neumann, R., Becker, U., and Ewing, R.C.: Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 8, 793797 (2009).CrossRefGoogle ScholarPubMed
Lang, M., Zhang, F.X., Lian, J., Trautmann, C., Neumann, R., and Ewing, R.C.: Combined high pressure and heavy-ion irradiation: A novel approach. J. Synchrotron Radiat. 16, 773777 (2009).Google Scholar
Lang, M., Zhang, F.X., Zhang, J.M., Tracy, C.L., Cusick, A.B., VonEhr, J., Chen, Z.Q., Trautmann, C., and Ewing, R.C.: Swift heavy ion-induced phase transformation in Gd2O3 . Nucl. Instrum. Methods Phys. Res., Sect. B 326, 212–125 (2014).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).CrossRefGoogle Scholar
Luther, E., Necker, C., Mihaila, B., Papin, P., and Guidry, D.: Microstructural characterization of uranium oxide. Trans. Am. Nucl. Soc. 104, 257 (2011).Google Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Häussermann, D.: Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Res. 14, 235 (1996).Google Scholar
Williamson, G. and Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 2231 (1953).Google Scholar
Tracy, C.L., Pray, J.M., Lang, M., Zhang, F.X., Popov, D., Park, C.Y., Trautmann, C., Bender, M., Severin, D., Skuratov, V.A., and Ewing, R.C.: Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 169173 (2014).Google Scholar
Weber, W.J.: Alpha-irradiation damage in CeO2, UO2 and PuO2 . Radiat. Eff. 83, 145156 (1984).Google Scholar
Lang, M., Zhang, F.X., Lian, J., Trautmann, C., Wang, Z., and Ewing, R.C.: Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 24, 1322 (2009).Google Scholar
Tracy, C.L., Lang, M., Pray, J.M., Popov, D., Park, C.Y., Trautmann, C., and Ewing, R.C.: Redox response of actinide materials to highly-ionizing radiation. Nat. Commun. 6, 6311 (2015).Google Scholar
Helean, K.B., Navrotsky, A., Vance, E.R., Carter, M.L., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L.M., and Catalano, J.G.: Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+ 0.23U6+ 0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: Three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303, 226239 (2002).Google Scholar
Sattonnay, G., Moll, S., Thomé, L., Decorse, C., Legros, C., Simon, P., Jagielski, J., Jozwik, J., and Monnet, I.: Phase transformations induced by high electronic excitation in ion irradiated Gd2(ZrxTi1−x)2O7 pyrochlores. J. Appl. Phys. 108, 103512 (2010).Google Scholar
Weber, W.J.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 98106 (2000).Google Scholar
Lang, M., Toulemonde, M., Zhang, J.M., Zhang, F.X., Tracy, C.L., Lian, J., Wang, Z.W., Weber, W.J., Severin, D., Bender, M., Trautmann, C., and Ewing, R.C.: Swift heavy ion track formation in Gd2Zr2-x Ti x O7 pyrochlore: Effect of electronic energy Loss. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 102115 (2014).Google Scholar
Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., and Weber, W.J.: Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. J. Nucl. Mater. 289, 188 (2001).Google Scholar
Hémon, S., Chailley, V., Dooryhée, E., Dufour, C., Gourbilleau, F., Levesque, F., and Paumier, E.: Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 563 (1997).Google Scholar
Hémon, S., Dufour, Ch., Gourbilleau, F., Paumier, E., Dooryhée, E., and Bégin-Colin, S.: Influence of the grain size: Yttrium oxide irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 443448 (1998).Google Scholar
Tang, M., Lu, P., Valdez, J.A., and Sickafus, K.E.: Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3, Er2O3, Lu2O3). J. Appl. Phys. 99, 063514 (2006).Google Scholar
Palomares, R.I., Tracy, C.L., Zhang, F.X., Popov, D., Park, C.Y., Trautmann, C., Ewing, R., and Lang, M.: In situ defect annealing of swift heavy ion-irradiated CeO2 and ThO2 in a hydrothermal diamond anvil cell: A synchrotron X-ray diffraction study. J. Crystallogr. (2015, submitted).Google Scholar
Bassett, W.A.: High pressure-temperature aqueous systems in the hydrothermal diamond anvil cell (HDAC). Eur. J. Mineral. 15, 773780 (2003).Google Scholar
Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., and Sutton, S.R.: Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Pressure Res. 28, 225235 (2008).Google Scholar
Mao, H-K., Xu, J., and Bell, P.M.: Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res.: Solid Earth 91, 46734676 (1986).CrossRefGoogle Scholar
Glasmacher, U.A., Lang, M., Keppler, H., Langenhorst, F., Neumann, R., Schardt, D., Trautmann, C., and Wagner, G.A.: Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys. Rev. Lett. 96, 195701 (2006).CrossRefGoogle ScholarPubMed
Schuster, B., Fujara, F., Merk, B., Neumann, R., Seidl, T., and Trautmann, C.: Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 4252 (2012).Google Scholar