Skip to main content

Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

  • Maik Lang (a1), Cameron L. Tracy (a2), Raul I. Palomares (a3), Fuxiang Zhang (a4), Daniel Severin (a5), Markus Bender (a5), Christina Trautmann (a6), Changyong Park (a7), Vitali B. Prakapenka (a8), Vladimir A. Skuratov (a9) and Rodney C. Ewing (a10)...

Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2Ti x Zr2−x O7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. This is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Djamel Kaoumi

Hide All
1. Grimes, R.W., Konings, R.J.M., and Edwards, L.: Greater tolerance for nuclear materials. Nat. Mater. 7, 683685 (2008).
2. Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13, 2432 (2010).
3. Sah, D.N., Viswanathan, U.K., Ramadasan, E., Unnikrishnan, K., and Anantharaman, S.: Post irradiation examination of thermal reactor fuels. J. Nucl. Mater. 383, 4553 (2008).
4. Fujino, T., Shiratori, T., Sato, N., Fukuda, K., Yamada, K., and Serizawa, H.: Post-irradiation examination of high burnup Mg doped UO2 in comparison with undoped UO2, Mg-Nb doped UO2 and Ti doped UO2 . J. Nucl. Mater. 297, 176205 (2001).
5. Tanaka, K., Miwa, S., Sekine, N., Yoshimochi, H., Obayashi, H.i, and Koyama, S.: Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation. J. Nucl. Mater. 440, 480488 (2013).
6. Nitani, N., Kuramoto, K., Yamashita, T., Ichise, K., Ono, K., and Nihei, Y.: Post-irradiation examination on particle dispersed rock-like oxide fuel. J. Nucl. Mater. 352, 365371 (2006).
7. Noirot, J., Desgranges, L., and Lamontagne, J.: Detailed characterisations of high burn-up structures in oxide fuels. J. Nucl. Mater. 372, 318339 (2008).
8. Shi, W.-Q., Yuan, L.-Y., Wang, C.-Z., Wang, L., Mei, L., Xiao, C.-L., Zhang, L., Li, Z.-J., Zhao, Y.-L., and Chai, Z.-F.: Exploring Actinide Materials Through Synchrotron Radiation Techniques. Adv. Mater. 26, 78077848 (2014).
9. Rothe, J., Butorin, S., Dardenne, K., Denecke, M.A., Kienzler, B., Löble, M., Metz, V., Seibert, A., Steppert, M., Vitova, T., Walther, C., and Geckeis, H.: The INE-Beamline for actinide science at ANKA. Rev. Sci. Instrum. 83, 043105 (2012).
10. Dardenne, K., Brendebach, B., Denecke, M.A., Liu, X., Rothe, J., and Vitova, T.: New developments at the INE-Beamline for actinide research at ANKA. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.
11. Solari, P.L., Schlutig, S., Hermange, H., and Sitaud, B.: MARS, a new beamline for radioactive matter studies at SOLEIL. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.
12. Konishi, H., Yokoya, A., Shiwaku, H., Motohashi, H., Makita, T., Kashihara, Y., Hashimoto, S., Harami, T., Sasaki, T.A., Maeta, H., Ohno, H., Maezawa, H., Asaoka, S., Kanaya, N., Ito, K., Usami, N., and Kobayashi, K.: Synchrotron radiation beamline to study radioactive materials at the photon factory. Nucl. Instrum. Methods Phys. Res., Sect. A 372, 322332 (1996).
13. Matz, W., Schell, N., Bernhard, G., Prokert, F., Reich, T., Claußner, J., Oehme, W., Schlenk, R., Dienel, S., Funke, H., Eichhorn, F., Betzl, M., Prühl, D., Strauch, U., Hüttig, G., Krug, H., Neumann, W., Brendler, V., Reichel, P., Denecke, M.A., and Nitsche, H.: ROBL—A CRG beamline for radiochemistry and materials research at the ESRF. J. Synchrotron Radiat. 6, 10761085 (1999).
14. Pan, X., Wu, X., Mo, K., Chen, X., Almer, J., Ilavsky, J., Haeffner, D.R., and Stubbins, J.F.: Lattice strain and damage evolution of 9-12%Cr ferritic/martensitic steel during in situ tensile test by X-ray diffraction and small angle scattering. J. Nucl. Mater. 407, 1015 (2010).
15. Mo, K., Zhou, Z., Miao, Y., Yun, D., Tung, H.-M., Zhang, G., Chen, W., Almer, J., and Stubbins, J.F.: Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel. J. Nucl. Mater. 455, 376381 (2014).
16. Wang, L., Li, M., and Almer, J.: In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 440, 8190 (2013).
17. Kuri, G., Cammelli, S., Degueldre, C., Bertsch, J., and Gavillet, D.: Neutron induced damage in reactor pressure vessel steel: An X-ray absorption fine structure study. J. Nucl. Mater. 385, 312318 (2009).
18. Daum, R.S., Chu, Y.S., and Motta, A.T.: Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J. Nucl. Mater. 392, 453463 (2009).
19. Couet, A., Motta, A.T., de Gabory, B., and Cai, Z.: Microbeam X-ray absorption near-edge spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers. J. Nucl. Mater. 452, 614627 (2014).
20. Polatidis, E., Frankel, P., Wei, J., Klaus, M., Comstock, R.J., Ambard, A., Lyon, S., Cottis, R.A., and Preuss, M.: Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432, 102112 (2013).
21. Mieszczynski, C., Kuri, G., Degueldre, C., Martin, M., Bertsch, J., Borca, C.N., Grolimund, D., Delafoy, Ch., and Simoni, E.: Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction. J. Nucl. Mater. 444, 274282 (2014).
22. Degueldre, C., Bertsch, J., Kuri, G., and Martin, M.: Nuclear fuel in generation II and III reactors: Research issues related to high burn-up. Energy Environ. Sci. 4, 16511661 (2011).
23. Degueldre, C., Mieszczynski, C., Borca, C., Grolimund, D., Martin, M., and Bertsch, J.: X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 116122 (2014).
24. Ice, G.E. and Specht, E.D.: Microbeam, timing, and signal-resolved studies of nuclear materials with synchrotron X-ray sources. J. Nucl. Mater. 425, 233237 (2012).
25. Was, G.S. and Averback, R.S.: 1.07-Radiation Damage Using Ion Beams. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 195221.
26. Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: In Ion Beam Science: Solved and Unsolved Problems, Sigmund, P. ed.; The Royal Danish Academy of Sciences and Letters: Copenhagen, 2006; pp. 263292.
27. Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25, 13441351 (2010).
28. Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C.: Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth Planet. Sci. Lett. 302, 227235 (2011).
29. Li, W.X., Lang, M., Gleadow, A.J.W., Zdorovets, M., and Ewing, R.C.: Thermal annealing of unetched fission tracks in apatite. Earth Planet. Sci. Lett. 321322, 121127 (2012).
30. Li, W.X., Kluth, P., Schauries, D., Rodriguez, M.D., Lang, M., Zhang, F.X., Zdorovets, M., Trautmann, C., and Ewing, R.C.: Effect of orientation on ion track formation in apatite and zircon. Am. Mineral. 99, 11271132 (2014).
31. Afra, B., Lang, M., Rodriguez, M.D., Zhang, J.M., Giulian, R., Kirby, N., Ewing, R.C., Trautmann, C., Toulemonde, M., and Kluth, P.: Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011).
32. Schauries, D., Afra, B., Bierschenk, T., Lang, M., Rodriguez, M.D., Trautmann, C., Li, W., Ewing, R.C., and Kluth, P.: The shape of ion tracks in natural apatite. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 117120 (2014).
33. Rodriguez, M.D., Li, W.X., Chen, F., Trautmann, C., Bierschenk, T., Afra, B., Schauries, D., Ewing, R.C., Mudie, S.T., and Kluth, P.: SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 150153 (2014).
34. Hémon, S., Dufour, C., Berthelot, A., Gourbilleau, F., Paumier, E., and Bégin-Collin, S.: Structural transformation in two yttrium oxide powders irradiated with swift molybdenum ions. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 339344 (2000).
35. Benyagoub, A.: Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72, 094114 (2005).
36. Grygiel, C., Lebius, H., Bouffard, S., Quentin, A., Ramillon, J.M., Madi, T., Guillous, S., Been, T., Guinement, P., Lelièvre, D., and Monnet, I.: Online in situ X-ray diffraction setup for structural modification studies during swift heavy ion irradiation. Rev. Sci. Instrum. 83, 013902 (2012).
37. Lang, M., Zhang, F.X., Li, W.X., Severin, D., Bender, M., Klaumünzer, S., Trautmann, C., and Ewing, R.C.: Swift heavy ion-induced amorphization of CaZrO3 perovskite. Nucl. Instrum. Methods Phys. Res., Sect. B 286, 271276 (2012).
38. Studer, F., Houpert, Ch., Toulemonde, M., and Dartyges, E.: Local environment of iron in heavy ion-irradiated amorphous magnetic oxides by Mössbauer and X-ray absorption spectroscopy. J. Solid State Chem. 91, 238249 (1991).
39. Ohno, H., Iwase, A., Matsumura, D., Nishihata, Y., Mizuki, J., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on effects of swift heavy ion irradiation in cerium oxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 30133017 (2008).
40. Iwase, A., Ohno, H., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 969972 (2009).
41. Ishikawa, N., Sonoda, T., Okamoto, Y., Sawabe, T., Takegahara, K., Kosugi, S., and Iwase, A.: X-ray study of radiation damage in UO2 irradiated with high-energy heavy ions. J. Nucl. Mater. 419, 392396 (2011).
42. Tahara, Y., Shimizu, K., Ishikawa, N., Okamoto, Y., Hori, F., Matsui, T., and Iwase, A.: Study on effects of energetic ion irradiation in Gd2O3-doped CeO2 by means of synchrotron radiation X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 5357 (2012).
43. Lang, M., Zhang, F.X., Zhang, J.M., Wang, J.W., Schuster, B., Trautmann, C., Neumann, R., Becker, U., and Ewing, R.C.: Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 8, 793797 (2009).
44. Lang, M., Zhang, F.X., Lian, J., Trautmann, C., Neumann, R., and Ewing, R.C.: Combined high pressure and heavy-ion irradiation: A novel approach. J. Synchrotron Radiat. 16, 773777 (2009).
45. Lang, M., Zhang, F.X., Zhang, J.M., Tracy, C.L., Cusick, A.B., VonEhr, J., Chen, Z.Q., Trautmann, C., and Ewing, R.C.: Swift heavy ion-induced phase transformation in Gd2O3 . Nucl. Instrum. Methods Phys. Res., Sect. B 326, 212–125 (2014).
46. Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).
47. Luther, E., Necker, C., Mihaila, B., Papin, P., and Guidry, D.: Microstructural characterization of uranium oxide. Trans. Am. Nucl. Soc. 104, 257 (2011).
48. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Häussermann, D.: Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Res. 14, 235 (1996).
49. Williamson, G. and Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 2231 (1953).
50. Tracy, C.L., Pray, J.M., Lang, M., Zhang, F.X., Popov, D., Park, C.Y., Trautmann, C., Bender, M., Severin, D., Skuratov, V.A., and Ewing, R.C.: Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 169173 (2014).
51. Weber, W.J.: Alpha-irradiation damage in CeO2, UO2 and PuO2 . Radiat. Eff. 83, 145156 (1984).
52. Lang, M., Zhang, F.X., Lian, J., Trautmann, C., Wang, Z., and Ewing, R.C.: Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 24, 1322 (2009).
53. Tracy, C.L., Lang, M., Pray, J.M., Popov, D., Park, C.Y., Trautmann, C., and Ewing, R.C.: Redox response of actinide materials to highly-ionizing radiation. Nat. Commun. 6, 6311 (2015).
54. Helean, K.B., Navrotsky, A., Vance, E.R., Carter, M.L., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L.M., and Catalano, J.G.: Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+ 0.23U6+ 0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: Three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303, 226239 (2002).
55. Sattonnay, G., Moll, S., Thomé, L., Decorse, C., Legros, C., Simon, P., Jagielski, J., Jozwik, J., and Monnet, I.: Phase transformations induced by high electronic excitation in ion irradiated Gd2(ZrxTi1−x)2O7 pyrochlores. J. Appl. Phys. 108, 103512 (2010).
56. Weber, W.J.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 98106 (2000).
57. Lang, M., Toulemonde, M., Zhang, J.M., Zhang, F.X., Tracy, C.L., Lian, J., Wang, Z.W., Weber, W.J., Severin, D., Bender, M., Trautmann, C., and Ewing, R.C.: Swift heavy ion track formation in Gd2Zr2-x Ti x O7 pyrochlore: Effect of electronic energy Loss. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 102115 (2014).
58. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., and Weber, W.J.: Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. J. Nucl. Mater. 289, 188 (2001).
59. Hémon, S., Chailley, V., Dooryhée, E., Dufour, C., Gourbilleau, F., Levesque, F., and Paumier, E.: Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 563 (1997).
60. Hémon, S., Dufour, Ch., Gourbilleau, F., Paumier, E., Dooryhée, E., and Bégin-Colin, S.: Influence of the grain size: Yttrium oxide irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 443448 (1998).
61. Tang, M., Lu, P., Valdez, J.A., and Sickafus, K.E.: Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3, Er2O3, Lu2O3). J. Appl. Phys. 99, 063514 (2006).
62. Palomares, R.I., Tracy, C.L., Zhang, F.X., Popov, D., Park, C.Y., Trautmann, C., Ewing, R., and Lang, M.: In situ defect annealing of swift heavy ion-irradiated CeO2 and ThO2 in a hydrothermal diamond anvil cell: A synchrotron X-ray diffraction study. J. Crystallogr. (2015, submitted).
63. Bassett, W.A.: High pressure-temperature aqueous systems in the hydrothermal diamond anvil cell (HDAC). Eur. J. Mineral. 15, 773780 (2003).
64. Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., and Sutton, S.R.: Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Pressure Res. 28, 225235 (2008).
65. Mao, H-K., Xu, J., and Bell, P.M.: Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res.: Solid Earth 91, 46734676 (1986).
66. Glasmacher, U.A., Lang, M., Keppler, H., Langenhorst, F., Neumann, R., Schardt, D., Trautmann, C., and Wagner, G.A.: Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys. Rev. Lett. 96, 195701 (2006).
67. Schuster, B., Fujara, F., Merk, B., Neumann, R., Seidl, T., and Trautmann, C.: Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 4252 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed