Skip to main content

Characterization of swift heavy ion irradiation damage in ceria

  • Clarissa A. Yablinsky (a1), Ram Devanathan (a2), Janne Pakarinen (a3), Jian Gan (a4), Daniel Severin (a5), Christina Trautmann (a6) and Todd R. Allen (a7)...

Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

C.A. Yablinsky and R. Devanathan contributed equally to this work


This work was performed while C.A. Yablinsky and J. Pakarinen were at Engineering Physics Department, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA

Contributing Editor: Joel Ribis

Hide All
1. Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt-1. J. Nucl. Mater. 327, 58 (2004).
2. Fuketa, T., Sasajima, H., Mori, Y., and Ishijima, K.: Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions. J. Nucl. Mater. 248, 249 (1997).
3. Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13, 24 (2010).
4. Ishikawa, N., Sonoda, T., Sawabe, T., Sugai, H., and Sataka, M.: Electronic stopping power dependence of ion-track size in UO2 irradiated with heavy ions in the energy range of ∼1MeV/u. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 180 (2013).
5. Garrido, F., Moll, S., Sattonnay, G., Thome, L., and Vincent, L.: Radiation tolerance of fluorite-structured oxides subjected to swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1451 (2009).
6. Yasuda, K., Etoh, M., Sawada, K., Yamamoto, T., Yasunaga, K., Matsumura, S., and Ishikawa, N.: Defect formation and accumulation in CeO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 185 (2013).
7. Sonoda, T., Kinoshita, M., Chimi, Y., Ishikawa, N., Sataka, M., and Iwase, A.: Electronic excitation effects in CeO2 under irradiations with high-energy ions of typical fission products. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 254 (2006).
8. Weber, W.J.: Alpha-irradiation damage in CeO2, UO2, and PuO2 . Radiat. Eff. Defects Solids 83, 145 (1984).
9. Lang, M., Zhang, F., Zhang, J., Ewing, R.C., Tracy, C.L., Cusick, A.B., VonEhr, J., Chen, Z., and Trautmann, C.: Swift heavy ion-induced phase transformation in Gd2O3 . Nucl. Instrum. Methods Phys. Res., Sect. B 326, 121 (2014).
10. Hemon, S., Chailley, V., Dooryhee, E., Dufour, C., Gourbilleau, F., Levesque, F., and Paumier, E.: Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 563 (1997).
11. Benyagoub, A., Couvreur, F., Bouffard, S., Levesque, F., Dufour, C., and Paumier, E.: Phase transformation induced in pure zirconia by high energy heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175, 417 (2001).
12. Toulemonde, M., Trautmann, C., Balanzat, E., Hjort, K., and Weidinger, A.: Track formation and fabrication of nanostructures with MeV-ion beams. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 1 (2004).
13. Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Experimental Phenomena and Thermal Spike Model Description of Ion Tracks in Amorphisable Inorganic Insulators. In Ion Beam Science: Solved and Unsolved Problems—Part I, Sigmund, P. ed.; The Royal Danish Academy of sciences and Letters: Copenhagen, 2006; p. 263. Mat.-Fys. Medd. Vol. 52.
14. Trautmann, C.: Micro- and Nanoengineering with Ion Tracks. In Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y. eds.; SpringerLink and C. Ebooks, Springer-Verlag: Berlin, Heidelberg, 2010; p. 215. Topics Appl. Physics 110.
15. Schwartz, K., Trautmann, C., and Neumann, R.: Electronic excitations and heavy-ion-induced processes in ionic crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 209, 73 (2003).
16. Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25, 1344 (2010).
17. Lang, M., Devanathan, R., Toulemonde, M., and Trautmann, C.: Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 19(1), 39 (2014).
18. Wang, J., Lang, M., Ewing, R.C., and Becker, U.: Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides. J. Phys.: Condens. Matter 25, 135001 (2013).
19. Bacon, D.J. and Diaz de la Rubia, T.: Molecular dynamics computer simulations of displacement cascades in metals. J. Nucl. Mater. 216, 275 (1994).
20. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A., and Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).
21. Sonoda, T., Kinoshita, M., Ishikawa, N., Sataka, M., Chimi, Y., Okubo, N., Iwase, A., and Yasunaga, K.: Clarification of the properties and accumulation effects of ion tracks in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2882 (2008).
22. Takaki, S., Yasuda, K., Yamamoto, T., Matsumura, S., and Ishikawa, N.: Atomic structure of ion tracks in ceria. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 140 (2014).
23. Tracy, C.L., McLain Pray, J., Lang, M., Popov, D., Park, C., Trautmann, C., and Ewing, R.C.: Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 169 (2014).
24. Kluth, P., Schnohr, C.S., Sprouster, O.H., Giulian, F., Ridgway, D.J., Pakarinen, R., Djurabekova, M.C., Nordlund, A.P., Byrne, C., Trautmann, D.J., Cookson, K., and Toulemonde, M.: Fine structure in swift heavy ion tracks in amorphous SiO2 . Phys. Rev. Lett. 101, 175503 (2008).
25. Pakarinen, O.H., Djurabekova, F., Nordlund, K., Kluth, P., and Ridgway, M.C.: Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1456 (2009).
26. Ziegler, J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
27. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).
28. Yasunaga, K., Yasuda, K., Matsumura, S., and Sonoda, T.: Electron energy-dependent formation of dislocation loops in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2877 (2008).
29. Rasband, W.S.: Image J (National Institutes of Health, Maryland, 1997–2014).
30. Todorov, I.T., Allan, N.L., Purton, J.A., Dove, M.T., and Smith, W.: Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores. J. Mater. Sci. 42, 1920 (2007).
31. Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).
32. Sayle, T.X.T., Parker, S.C., and Sayle, D.C.: Oxygen transport in unreduced, reduced and Rh(III)-doped CeO2 nanocrystals. Faraday Discuss. 134, 377 (2007).
33. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).
34. Devanathan, R., Gao, F., and Sundgren, C.J.: Role of cation choice in the radiation tolerance of pyrochlores. RSC Adv. 3, 2901 (2013).
35. Kumar, A., Devanathan, R., Shutthanandan, V., Kuchibhata, S., Karakoti, A.S., Yong, Y., Thevuthasan, S., and Seal, S.: Radiation-induced reduction of ceria in single and polycrystalline thin films. J. Phys. Chem. C 116, 361 (2012).
36. Ishikawa, N., Ohhara, K., Ohta, Y., and Michikami, O.: Binomial distribution function for intuitive understanding of fluence dependence of non-amorphized ion track area. Nucl. Instrum. Methods Phys. Res., Sect. B 286, 3273 (2010).
37. Zelaya, E., Tolley, A., Condo, A.M., and Schumacher, G.: Swift heavy ion irradiations of Cu-Zn-al and Cu-al-Ni alloys. J. Phys.: Condens. Matter 21, 185009 (2009).
38. Garvie, L.A.J. and Buseck, P.R.: Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 60, 1943 (1999).
39. Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., and de la Rubia, T.D., and Tarus, J.: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B: Condens. Matter 57, 7556 (1998).
40. Sasajima, Y., Ajima, N., Osada, T., Ishikawa, N., and Iwase, A.: Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 314, 202 (2013).
41. Iwase, A., Ohno, H., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 969 (2009).
42. Ohno, H., Iwase, A., Matsumura, D., Nishihata, Y., Mizuki, J., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on effects of swift heavy ion irradiation in cerium dioxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3013 (2008).
43. Chen, W-Y., Wen, J., Kirk, M.A., Miao, Y., Ye, B., Kleinfeldt, B.R., Oaks, A.J., and Stubbins, J.F.: Characterization of dislocation loops in CeO2 irradiated with high energy krypton and xenon. Philos. Mag. 93, 4569 (2013).
44. Szenes, G., Fink, D., Klaumunzer, S., Paszti, F., and Peter, A.: Ion-induced tracks in Bi4Ge3O12 and Bi12GeO20 crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 245, 243 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 13
Total number of PDF views: 71 *
Loading metrics...

Abstract views

Total abstract views: 482 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.