Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T22:11:39.232Z Has data issue: false hasContentIssue false

Chemical analysis in YBa2Cu3O7−x melt-textured samples

Published online by Cambridge University Press:  31 January 2011

F. J. Gotor
Affiliation:
Centre de Recherches sur la Physique des Hautes Temp’eratures, CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orl’eans Cedex 2, France
J. Ayache
Affiliation:
CSNM, Bat 108, Univ. Paris 11, 91405 Orsay Campus, France
N. Pellerin
Affiliation:
Centre de Recherches sur la Physique des Hautes Températures, CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
P. Odier*
Affiliation:
Centre de Recherches sur la Physique des Hautes Températures, CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
*
a)Address all correspondence to this author.
Get access

Abstract

A melt-textured process that involves the peritectic reaction Y2BaCuO5 + liquid → YBa2Cu3O7−x is the best method to develop bulk YBa2Cu3O7−x superconductors with improved transport and magnetic properties. Up to this point, information regarding cationic stoichiometry in textured samples is rather lacking in the literature. In this work, wavelength dispersive analysis (WDS) at a microscopic level and energy dispersive x-ray analysis (EDX) at a nanoscopic level were used to characterize the chemical composition of YBa2Cu3O7−x textured samples. The melt-textured process generally modifies the sample stoichiometry. Thus, a textured sample composition cannot be directly obtained even from an accurate knowledge of the starting composition. We have shown that WDS can be used to determine the overall composition and therefore the Y2BaCuO5 content in these samples. It is also a powerful method to control chemical homogeneity and to investigate chemical modifications occurring during processing, especially those resulting from interaction between melt and substrate. The exact nature of YBa2Cu3O7−x nucleation and crystallization still presents many unsolved questions. Nanoanalysis allowed us to study Y2BaCuO5 dissolution in the peritectic liquid, and we have confirmed that it takes place exclusively by removing yttrium from Y2BaCuO5 particles. We have also shown the existence of an yttrium-rich liquid phase, i.e., with a higher yttrium concentration that can be deduced from the equilibrium phase diagram. A liquid phase having a composition close to that of YBa2Cu3O7−x can be inferred from this work. This suggests that YBa2Cu3O7−x nucleation and crystallization take place homogeneously from this liquid.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
2.Salama, K. and Lee, D. F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
3.Gervais, M., Odier, P., and Coutures, J. P., Mater. Sci. Eng. B 8, 287 (1991).CrossRefGoogle Scholar
4.McGinn, P. J., Chen, W., Zhu, N., Varanasi, C., Tan, L., and Balkin, D., Physica C 183, 51 (1991).CrossRefGoogle Scholar
5.Chow, J. C. L. and Fung, P. C. W., Chem. Phys. Lett. 223, 185 (1994).CrossRefGoogle Scholar
6.Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbush, P. D., and Burns, S. J., Physica C 210, 197 (1993).CrossRefGoogle Scholar
7.Bateman, C. A., Zhang, L., Chen, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
8.Pellerin, N., Odier, P., Simon, P., and Chateigner, D., Physica C 222, 133 (1994).CrossRefGoogle Scholar
9.Pellerin, N., Gotor, F. J., and Odier, P., unpublished data.Google Scholar
10.Chen, B. J., Rodriguez, M. A., Misture, S. T., and Snyder, R. L., Physica C 217, 367 (1993).CrossRefGoogle Scholar
11.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
12.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9, 1350 (1994).CrossRefGoogle Scholar
13.Schmitz, G. J., Laakmann, J., Wolters, Ch., and Rex, S., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
14.Ayache, J., Odier, P., and Pellerin, N., Supercond. Sci. Technol. 7, 655 (1994).CrossRefGoogle Scholar
15.Kim, J. S. and Gaskell, D. R., J. Am. Ceram. Soc. 77, 753 (1994).CrossRefGoogle Scholar
16.Krabbes, G., Bieger, W., Wiesner, U., Ritschel, M., and Teresink, T., J. Solid State Chem. 103, 420 (1993).CrossRefGoogle Scholar
17.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1991).CrossRefGoogle Scholar
18. W.Wong-Ng and Cook, L. P., J. Am. Ceram. Soc. 77, 1883 (1994).Google Scholar
19.Kim, C. J., Kim, K. B., Won, D. Y., and Hong, G. W., Physica C 228, 351 (1994).CrossRefGoogle Scholar
20.Gauss, S., Schmelz, M., Bestgen, H., and Assmus, W., Physica C 235–240, 461 (1994).CrossRefGoogle Scholar
21.Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
22.Wang, Z. L., Goyal, A., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
23.Mackenzie, A. P., Physica C 178, 365 (1991).CrossRefGoogle Scholar
24.Odier, P., Gotor, F. J., Pellerin, N., Lobo, R. P. S. M., Ayache, J., Noel, H., Chaminade, J. P., and Collin, G., unpublished.Google Scholar
25.Gotor, F. J., Fert, A. R., Odier, P., and Pellerin, N., J. Am. Ceram. Soc. 78, 2113 (1995).CrossRefGoogle Scholar
26.Pellerin, N., Gervais, M., and Odier, P., J. Mater. Res. 7, 558 (1992).CrossRefGoogle Scholar
27.Miletich, R., Murakami, M., Preisinger, A., and Weber, H. W., Physica C 209, 415 (1993).CrossRefGoogle Scholar
28.Meng, R. L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y. Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
29.Gotor, F. J., Pellerin, N., Odier, P., Cazy, E., Bonnet, J. P., Fert, A. R., and Ayache, J., Physica C 247, 252 (1995).CrossRefGoogle Scholar
30.Pellerin, N., Gervais, M., and Odier, P., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 537.Google Scholar
31.Erb, A., Traulsen, T., and Müller-Vogt, G., Physica C 237, 487 (1994).Google Scholar
32.Aselage, T. L., Physica C 233, 292 (1994).CrossRefGoogle Scholar
33.Griffith, M. L., Huffman, R. T., and Halloran, J. W., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
34.Goyal, Z. L., Goyal, A., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).Google Scholar
35.Grantscharova, E. and Desgardin, G., Cryst. Res. Technol. 29, 3 (1994).CrossRefGoogle Scholar
36.Assmus, W. and Schmidbauer, W., Supercond. Sci. Technol. 6, 555 (1993).CrossRefGoogle Scholar
37.John, D. H. St., Acta Metall. Mater. 38, 631 (1990).Google Scholar
38.Nagaya, S., Miyajima, M., Hirabayashi, I., Shiohara, Y., and Tanaka, S., IEEE Trans. Magn. 27, 1487 (1991).CrossRefGoogle Scholar
39.Olive, J. R., Hofmeister, W. H., Bayuzick, R. J., Carro, G., McHugh, J. P., Hopkins, R. H., Vlasse, M., Weber, J. K. R., Nordine, R. C., and McElfresh, M., J. Mater. Res. 9, 1 (1994).CrossRefGoogle Scholar