Skip to main content Accessibility help

Chemical modification of degenerate eutectics: A review of recent advances and current issues

  • Saman Moniri (a1) and Ashwin J. Shahani (a2)

In certain alloy systems, a liquid of a fixed composition freezes to form a mixture of two solid phases, one of which may be faceted and the other nonfaceted (i.e., a ‘degenerate’ or irregular eutectic). The role of trace metallic additions on the microstructure of the eutectic has received significant research interest over the last half-century, culminating in advances in theoretical, computational, and experimental fronts. The drastic morphological, topological, and crystallographic changes that accompany metallic additions strongly influence the mechanical properties of the as-synthesized eutectic microstructure. In this review, we survey the mechanistic origins leading to a modified eutectic microstructure and describe the current status in the field of eutectic solidification in the presence of metallic modifying agents. We will also discuss the remaining challenges and future opportunities that would help move the field forward and enable bottom–up tuning of the complex degenerate microstructures to technological demands.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Chemical modification of degenerate eutectics: A review of recent advances and current issues
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Chemical modification of degenerate eutectics: A review of recent advances and current issues
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Chemical modification of degenerate eutectics: A review of recent advances and current issues
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All
1.Fredriksson, H. and Åkerlind, U.: Solidification and Crystallization Processing in Metals and Alloys (John Wiley & Sons, Inc., Chichester, United Kingdom, 2012).
2.Kurz, W. and Fisher, D.J.: Fundamentals of Solidification (Trans Tech, Zurich, Switzerland, 1998).
3.Dantzig, J.A. and Rappaz, M.: Solidification (EPFL Press, Boca Raton, Florida, 2009).
4.Napolitano, R.E., Meco, H., and Jung, C.: Faceted solidification morphologies in low-growth-rate Al–Si eutectics. JOM 56, 1621 (2004).
5.Shahani, A.J., Xiao, X., and Voorhees, P.W.: The mechanism of eutectic growth in highly anisotropic materials. Nat. Commun. 7, 12953 (2016).
6.Fisher, D.J. and Kurz, W.: A theory of branching limited growth of irregular eutectics. Acta Metall. Mater. 19, 777794 (1979).
7.Stefanescu, D.M.: Science and Engineering of Casting Solidification (Springer, Boston, Massachusetts, 2009).
8.Steen, H.A.H. and Hellawell, A.: Structure and properties of aluminum–silicon eutectic alloys. Acta Metall 20, 363370 (1972).
9.Yilmaz, F. and Elliott, R.: The microstructure and mechanical properties of unidirectionally solidified Al–Si alloys. J. Mater. Sci. 24, 20652070 (1989).
10.Hosch, T. and Napolitano, R.E.: The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys. Mater. Sci. Eng., A 528, 226232 (2010).
11.Croker, M.N., Fidler, R.S., and Smith, R.W.: The characterization of eutectic structures. Proc. R. Soc. A 335, 1537 (1973).
12.Elliott, R.: Eutectic Solidification Processing: Crystalline and Glassy Alloys (Butterworths, London, United Kingdom, 1983).
13.Pacz, A.: Alloy. U.S. Patent 1387900 (1921).
14.Wang, R. and Lu, W.: Electrolysis, Kleperis, J., ed. (IntechOpen, Rijeka, Croatia, 2012).
15.Mondolfo, L.F.: Nucleation in eutectic alloys. J. Aust. Inst. Met. 10, 169177 (1965).
16.Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 11281142 (1966).
17.Shivkumar, S., Wang, L., and Apelian, D.: Molten metal processing of advanced casting aluminum alloys. JOM 43, 2632 (1991).
18.Fredriksson, H., Hillert, M., and Lange, N.: The modification of aluminum-silicon alloys by sodium. J. Inst. Met. 101, 285299 (1973).
19.Campbell, J. and Tiryakioğlu, M.: Review of effect of P and Sr on modification and porosity development in Al–Si alloys. Mater. Sci. Technol. 26, 262268 (2010).
20.Sigworth, G.K.: The modification of Al–Si alloys: Important practical and theoretical aspects. Int. J. Metalcast. 2, 19 (2008).
21.Moniri, S., Xiao, X., and Shahani, A.J.: Caught in the act: The mechanism of eutectic modification by trace impurities (under review).
22.Cross, C.E. and Olson, D.L.: Modification of eutectic weld metal microstructure. Weld. Res. Suppl., 61, 381387 (1982).
23.Hosch, T., England, L.G., and Napolitano, R.E.: Analysis of the high growth-rate transition in Al–Si eutectic solidification. J. Mater. Sci. 44, 48924899 (2009).
24.Makhlouf, M.M. and Guthy, H.V.: The aluminum–silicon eutectic reaction: Mechanisms and crystallography. J. Light Met. 1, 199218 (2001).
25.Liang, S.M. and Schmid-Fetzer, R.: Phosphorus in Al–Si cast alloys: Thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data. Acta Mater. 72, 41 (2014).
26.Darlapudi, A., McDonald, S.D., and StJohn, D.H.: The influence of Cu, Mg, and Ni on the solidification and microstructure of Al–Si alloys. IOP Conf. Ser.: Mater. Sci. Eng. 117, 17 (2016).
27.Farahany, S., Ourdjini, A., Idrsi, M.H., and Shabestari, S.G.: Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis. Thermochim. Acta 559, 59 (2013).
28.Savas, M.A. and Altintas, S.: Control of mechanical and wear properties of a commercial Al–Si eutectic alloy. J. Mater. Sci. 27, 1255 (1992).
29.Ludwig, T.H., Schaffer, P.L., and Arnberg, L.: Influence of some trace elements on solidification path and microstructure of Al–Si foundry alloys. Metall. Mater. Trans. A 44, 3783 (2013).
30.Hegde, S. and Prabhu, K.N.: Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 43, 3009 (2008).
31.Knuutinen, A., Nogita, K., McDonald, S.D., and Dahle, A.K.: Modification of Al–Si alloys with Ba, Ca, Y, and Yb. J. Light Met. 1, 229 (2001).
32.Nogita, K., Drennan, J., and Dahle, A.K.: Evaluation of silicon twinning in hypo-eutectic Al–Si alloys. Mater. Trans. 44, 625 (2003).
33.Nogita, K., McDonald, S.D., and Dahle, A.K.: Eutectic modification of Al–Si alloys with rare earth metals. Mater. Trans. 45, 323 (2004).
34.Shi, Z.M., Wang, Q., Zhao, G., and Zhang, R.Y.: Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater. Sci. Eng., A 626, 102 (2015).
35.Ludwig, T.H., Schonhovd Dæhlen, E., Schaffer, P.L., and Arnberg, L.: The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy. J. Alloys Compd. 586, 180 (2014).
36.Patakham, U., Kajornchaiyakul, J., and Limmaneevichitr, C.: Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium. J. Alloys Compd. 575, 273 (2013).
37.Li, J.H., Wanderka, N., Balogh, Z., Stender, P., Kropf, H., Albu, M., Tsunekawa, Y., Hofer, F., Schmitz, G., and Schumacher, P.: Effects of trace elements (Y and Ca) on the eutectic Ge in Al–Ge based alloys. Acta Mater. 111, 85 (2016).
38.Rao, J., Zhang, J., Liu, R., and Zheng, J.: Modification of eutectic Si and the microstructure in an Al–7Si alloy with barium addition. Mater. Sci. Eng., A 728, 72 (2018).
39.Li, J.H. and Schumacher, P.: Light Metals 2016 (John Wiley & Sons, Inc., Hoboken, New Jersey, 2016); pp. 711714.
40.Hellawell, A.: The growth and structure of eutectics with silicon and germanium. Prog. Mater. Sci. 15, 3 (1970).
41.Rossi, P.E.: Quantitative classification and assessment of modification in hypoeutectic aluminum–silicon alloys. Ph.D. thesis, der Universität des Saarlandes, Saarbrücken, Germany, 2015.
42.Li, J.H., Zarif, M.Z., Dehm, G., and Schumacher, P.: Influence of impurity elements on the nucleation and growth of Si in high purity melt-spun Al–Si-based alloys. Philos. Mag. 92, 3789 (2012).
43.Hanna, M.D., Lu, S-Z., and Hellawell, A.: Modification in the aluminum silicon system. Metall. Trans. A 15, 459 (1984).
44.Kim, C.B. and Heine, R.W.: Fundamentals of modification in the aluminum–silicon system. J. Inst. Met. 92, 367 (1963).
45.Eiken, J., Apel, M., Liang, S-M., and Schmid-Fetzer, R.: Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al–Si alloys: Combined thermodynamic computation and phase-field simulation. Acta Mater. 98, 152163 (2015).
46.Dahle, A.K., Nogita, K., McDonald, S.D., Dinnis, C., and Lu, L.: Eutectic modification and microstructure development in Al–Si alloys. Mater. Sci. Eng., A 413–414, 243248 (2005).
47.Crosley, P.B. and Mondolfo, L.F.: The modification of aluminum–silicon alloys. Mod. Cast. 46, 89100 (1966).
48.McDonald, S.D., Nogita, K., and Dahle, A.K.: Eutectic nucleation in Al–Si alloys. Acta Mater. 52, 42734280 (2004).
49.Straumanis, M.E. and Aka, E.Z.: Lattice parameters, coefficients of thermal expansion, and atomic weights of purest silicon and germanium. J. Appl. Phys. 23, 330334 (1952).
50.Yeh, C.Y., Lu, Z.W., Froyen, S., and Zunger, A.: Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 1008610097 (1992).
51.Li, J., Hage, F.S., Liu, X., Ramasse, Q., and Schumacher, P.: Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al–Si alloys. Sci. Rep. 6, 25244 (2016).
52.Pennors, A., Samuel, A.M., Samuel, F.H., and Doty, H.W.: Precipitation of β-Al5FeSi iron intermetallic in Al–6% Si–3.5% Cu (319) type alloys: Role of Sr and P. AFS Trans. 106, 251264 (1998).
53.Liao, H., Zhang, M., Wu, Q., Wang, H., and Sun, G.: Refinement of eutectic grains by combined addition of strontium and boron in near-eutectic Al–Si alloys. Scr. Mater. 57, 11211124 (2007).
54.Darlapudi, A., McDonald, S.D., Terzi, S., Prasad, A., Felberbaum, M., and StJohn, D.H.: The influence of ternary alloying elements on the Al–Si eutectic microstructure and the Si morphology. J. Cryst. Growth 433, 6373 (2016).
55.Flood, S.C. and Hunt, J.D.: Modification of Al–Si eutectic alloys with Na. Met. Sci. 15, 287294 (1981).
56.Sunigawa, I.: Growth and morphology of crystals. Forma 14, 147166 (1999).
57.McDonald, S.D., Dahle, A.K., Taylor, J.A., and StJohn, D.H.: Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum–silicon alloys. Metall. Mater. Trans. A 35, 18291837 (2004).
58.Wagner, R.S.: On the growth of germanium dendrites. Acta Metall 8, 5760 (1960).
59.Hamilton, D.R. and Seidensticker, R.G.: Propagation mechanism of germanium dendrites. J. Appl. Phys. 31, 11651168 (1960).
60.Day, M.G. and Hellawell, A.: The microstructure and crystallography of aluminum–silicon eutectic alloys. Proc. R. Soc. A 305, 473491 (1968).
61.Lu, S-Z. and Hellawell, A.: The mechanism of silicon modification in aluminum–silicon alloys: Impurity-induced twinning. Metall. Mater. Trans. A 18, 17211733 (1987).
62.Shahani, A.J., Gulsoy, E.B., Poulsen, S.O., Xiao, X., and Voorhees, P.W.: Twin-mediated crystal growth: An enigma resolved. Sci. Rep. 6, 28651 (2016).
63.Shahani, A.J. and Voorhees, P.W.: Twin-mediated crystal growth. J. Mater. Res. 31, 29362947 (2016).
64.Shamsuzzoha, M. and Hogan, L.M.: The crystal morphology of fibrous silicon in strontium-modified Al–Si eutectic. Philos. Mag. A 54, 459477 (1986).
65.Li, J.H., Hage, F., Wiessner, M., Romaner, L., Scheiber, D., Sartory, B., Ramasse, Q., and Schumacher, P.: The roles of Eu during the growth of eutectic Si in Al–Si alloys. Sci. Rep. 5, 13802 (2015).
66.Li, J.H., Albu, M., Hofer, F., and Schumacher, P.: Solute adsorption and entrapment during eutectic Si growth in Al–Si-based alloys. Acta Mater. 83, 187202 (2015).
67.Liu, X., Zhang, Y., Beausir, B., Liu, F., Esling, C., Yu, F., Zhao, X., and Zuo, L.: Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al–12.7% Si alloys investigated by SEM/EBSD. Acta Mater. 97, 338347 (2015).
68.Timpel, M., Wanderka, N., Schlesiger, R., Yamamoto, T., Lazarev, N., Isheim, D., Schmitz, G., Matsumura, S., and Banhart, J.: The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 60, 39203928 (2012).
69.Manickaraj, J., Gorny, A., Cai, Z., and Shankar, S.: X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al–Si hypoeutectic alloy. Appl. Phys. Lett. 104, 073102 (2014).
70.Barrirero, J., Li, J.H., Engstler, M., Ghafoor, N., Schumacher, P., Odén, M., and Mücklich, F.: Cluster formation at the Si/liquid interface in Sr and Na modified Al–Si alloys. Scr. Mater. 117, 1619 (2016).
71.Albu, M., Pal, A., Gspan, C., Picu, R.C., Hofer, F., and Kothleitner, G.: Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase. Sci. Rep. 6, 31635 (2016).
72.Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., and Woodruff, J.W.: An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2008).
73.Timpel, M., Wanderka, N., Vinod Kumar, G.S., and Banhart, J.: Microstructural investigation of Sr-modified Al–15 wt% Si alloys in the range from micrometer to atomic scale. Ultramicroscopy 111, 695 (2011).
74.Nogita, K., Yasuda, H., Yoshida, K., Uesugi, K., Takeuchi, A., Suzuki, Y., and Dahle, A.K.: Determination of strontium segregation in modified hypoeutectic Al–Si alloy by micro X-ray fluorescence analysis. Scr. Mater. 55, 787 (2006).
75.Gruzleski, J.E.: Production and Electrolysis of Light Metals (Elsevier, New York, New York, 1989); pp. 131141.
76.Li, J.H., Barrirero, J., Engstler, M., Aboulfadl, H., Mücklich, F., and Schumacher, P.: Nucleation and growth of eutectic Si in Al–Si alloys with Na addition. Metall. Mater. Trans. A 46, 1300 (2014).
77.Eswara Moorthy, S.K. and Howe, J.M.: Kinetic analyses of the growth and dissolution phenomena of primary Si and α-Al in partially molten Al–Si (–Cu–Mg) alloy particles using in situ transmission electron microscopy. Metall. Mater. Trans. A 42, 1667 (2011).
78.Schneider, M.M. and Howe, J.M.: Observation of interface dynamics and Cu island formation at a crystalline Si/liquid Al-alloy interface. Acta Mater. 133, 224 (2017).
79.Sagawa, R., Hashiguchi, H., Isabell, T., Ritz, R., Simson, M., Huth, M., Soltau, H., Martinez, G. T., Nellist, P. D., and Kondo, Y.: Low Dose Imaging by STEM Ptychography Using Pixelated STEM Detector. Microsc. Microanal. 24 (S1), 198 (2018).
80.Jokisaari, A.M. and Thornton, K.: General method for incorporating CALPHAD free energies of mixing into phase field models: Application to the α-zirconium/δ-hydride system. Calphad 51, 334 (2015).
81.Hecht, U., Gránásy, L., Pusztai, T., Böttger, B., Apel, M., Witusiewicz, V., Ratke, L., De Wilde, J., Froyen, L., Camel, D., Drevet, B., Faivre, G., Fries, S.G., Legendre, B., and Rex, S.: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng., R 46, 1 (2004).
82.Kulkarni, A.A., Kohanek, J., Tyler, K.I., Hanson, E., Kim, D.U., Thornton, K., and Braun, P.V.: Template-directed solidification of eutectic optical materials. Adv. Opt. Mater. 6, 1800071 (2018).
83.LLorca, J. and Orera, V.M.: Directionally solidified eutectic ceramic oxides. Prog. Mater. Sci. 51, 711 (2006).
84.Steinmetz, P., Hötzer, J., Kellner, M., Genau, A., and Nestler, B.: Study of pattern selection in 3D phase-field simulations during the directional solidification of ternary eutectic Al–Ag–Cu. Comput. Mater. Sci. 148, 131 (2018).
85.Zhang, A., Guo, Z., and Xiong, S.M.: Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection. Phys. Rev. E 97, 053302 (2018).
86.Eggleston, J.J., McFadden, G.B., and Voorhees, P.W.: A phase-field model for highly anisotropic interfacial energy. Phys. D 150, 91 (2001).
87.Torabi, S., Lowengrub, J., Voigt, A., and Wise, S.: A new phase-field model for strongly anisotropic systems. Proc. R. Soc. A 465, 1337 (2009).
88.Liotti, E., Arteta, C., Zisserman, A., Lui, A., Lempitsky, V., and Grant, P.S.: Crystal nucleation in metallic alloys using X-ray radiography and machine learning. Sci. Adv. 4, eaar4004 (2018).
89.Mathiesen, R.H., Arnberg, L., Nguyen-Thi, H., and Billia, B.: In situ X-ray video microscopy as a tool in solidification science. JOM 64, 76 (2012).
90.Falch, K.V., Casari, D., Di Michiel, M., Detlefs, C., Snigireva, A., Snigireva, I., Honkimäki, V., and Mathiesen, R.H.: In situ hard X-ray transmission microscopy for material science. J. Mater. Sci. 52, 3497 (2017).
91.Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schafedler, T.A., and Pollock, T.M.: 3D printing of high-strength aluminum alloys. Nature 549, 365369 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed