Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-15T08:16:34.006Z Has data issue: false hasContentIssue false

Coherent vibrations in percolative oil-resin systems: A Böse condensation effect observed by the technique of thermostimulated currents

Published online by Cambridge University Press:  31 January 2011

O. Pagès*
Affiliation:
Institut de Physique, Université de Metz, 1Bd Arago, 57078 Metz Cedex 3, France
M. Grimau
Affiliation:
Departemento de Fisica, Universidad Simon Bolivar, 89000 Caracas, Venezuela
A. Lamure
Affiliation:
Groupe de Physique des Polymères, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
A. Zaoui
Affiliation:
Institut de Physique, Université de Metz, 1Bd Arago, 57078 Metz Cedex 3, France and Department of Physics, University of Sidi-Bel-Abbes, 22000 Sidi Bel-Abbes, Algeria
B. Legendre
Affiliation:
Laboratoire de Chimie-Physique Minérale et Bioinorganique, Faculté de Pharmacie, Université d'Orsay, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France
*
a)Address all correspondence to this author. e-mail: pages@ipc.sciences.univ-metz.fr
Get access

Abstract

The analysis of thermostimulated currents by the fractional polarization procedure is used to understand percolative behaviors in conductor-insulator-like oil-resin mixtures. On the fundamental side oil-poor systems are particularly attractive. They offer for the first time the opportunity to apply a pure Debye-like dielectric treatment of the quasi-elastic dipolar relaxation since the involved dipoles are independent, associated with spatially separated bounded clusters. An unusual compensation phenomenon is observed in the sense that first it does not describe hierarchically correlated motions and secondly it is related to the conducting phase but exhibits characteristics of the insulating phase. This compensation phenomenon is interpreted within the framework of Fröhlich's approach of relaxation processes in biological materials, as significative of a coherent vibration resulting from Böse condensation effects. On the practical side, the surveillance of this compensation phenomenon appears to be a new way to follow the coalescence of conducting bounded clusters with aging.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London, 1985), p. 87.CrossRefGoogle Scholar
2.Stauffer, D., Phys. Rep. 54, 3 (1979).CrossRefGoogle Scholar
3.Straley, J. P., in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by Garland, J. C. and Tanner, D. B. (Proceedings No. 1, New York, 1978).Google Scholar
4.Deutscher, G., Kapitulnik, A., and Rappaport, M.L., in Percolation Structures and Processes, edited by Deutscher, G., Zallen, R., and Adler, J. (Annals of the Israel Physical Society, Haifa, Israel, 1983), Vol. 5.Google Scholar
5.Toulouse, G. and Pfeuty, P., Introduction au Groupe de Renormalisation et à ses Applications (Presses Universitaires de Grenoble, Grenoble, France, 1975).Google Scholar
6.Yeomans, J. M., Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford, 1992).CrossRefGoogle Scholar
7.Pagès, O., Lamure, A., Lacabanne, C., Legendre, B., Odlyha, M., and Craig, D., J. Mater. Res. 12, 10, 2784 (1997).CrossRefGoogle Scholar
8.Dissado, L.A. and Hill, R. M., Nature (London) 279, 685 (1979).CrossRefGoogle Scholar
9.Jonscher, A.K., Physics of Dielectric Solids, Institute of Physics Conference, Series 59 (1981).Google Scholar
10.Palmer, R.G., Stein, D. L., Abrahams, E., and Anderson, P. W., Phys. Rev. Lett. 53, (10), 958 (1984).CrossRefGoogle Scholar
11.Zielinski, M., Swiderski, T., and Kryszewski, M., Polymer 19, 883 (1978).CrossRefGoogle Scholar
12.Ronarc'h, D., Audern, P., and Moura, J. L., J. Appl. Phys. 58, 474 (1985).CrossRefGoogle Scholar
13.Mills, J. S. and White, R., Organic Chemistry of Museum Objects (Butterworths, London, 1986).Google Scholar
14.Lacabanne, C., Ph.D. Thesis, University of Toulouse, France (1974).Google Scholar
15.Chatain, D., Ph.D. Thesis, University of Toulouse, France (1974).Google Scholar
16.Dufresnes, A., Ph.D. Thesis, University of Toulouse, France (1990).Google Scholar
17.Monpagens, J. C., Chatain, D., Lacabanne, C., and Gautier, P. G., J. Polym. Sci. Phys. 15, 767 (1977).CrossRefGoogle Scholar
18.Monpagens, J. C., Chatain, D., Lacabanne, C., and Gautier, P. G., Solid State Commun. 18, 1611 (1976).CrossRefGoogle Scholar
19.McCrum, M.G., Polymer 25, 299 (1984).CrossRefGoogle Scholar
20.Lacabanne, C., Chatain, D., and Monpagens, J. C., J. Macromol. Sci. Phys. B13 (4), 357 (1977).Google Scholar
21.Hoffman, J. D., Williams, G., and Passaglia, E. J., J. Polym. Sci. Part C 14, 173 (1966).CrossRefGoogle Scholar
22.Goswany, D.N., J. Oil Col. Chem. Assoc. 63, 101 (1980).Google Scholar
23.Fröhlich, H., Theory of Dielectrics (Oxford University Press, London, 1958).Google Scholar
24.Fröhlich, H., Cooperative Phenomena, edited by Haken, H. (North-Holland Publishing Company, Amsterdam, 1974), p. 263.Google Scholar
25.Fröhlich, H., Synergetics, edited by Haken, H. (Stuttgart, 1972), p. 241.Google Scholar
26.Fröhlich, H., Phys. Lett. A 39, 153 (1972).CrossRefGoogle Scholar
27.Fröhlich, H., J. Collect. Phenomena 1, 101 (1973).Google Scholar