Skip to main content
×
Home
    • Aa
    • Aa

Collagen-fibril matrix properties modulate the kinetics of silica polycondensation to template and direct biomineralization

  • Jennifer L. Kahn (a1), Necla Mine Eren (a2), Osvaldo Campanella (a2), Sherry L. Voytik-Harbin (a3) and Jenna L. Rickus (a4)...
Abstract
Abstract

Fibrillar collagen networks template and direct biocompatible silica mineralization to produce hybrid materials for biomedical applications. Silica mineralization kinetics is critical for precision-tuning material properties, including mechanical strength, microstructure, and interface thickness. We investigated the effect of varying collagen template fibril volume fraction (0.2–0.8) and elasticity (G′ 200–1500 Pa) on silica mineralization rates. Measurement of the depletion of mono- and disilicic acids by silicomolybdic acid titration showed that silica condensation on collagen fibrils follows third-order kinetics. Resulting third-order rate constants increased linearly with storage modulus and quadratically with fibril volume fraction. A unique rheological approach used to probe the collagen template surface elasticity in real-time during silicification suggested a two-phase mechanism with high levels of surface-localized gelation in Phase 1 and high levels of bulk solution-localized gelation in Phase 2. These results provide a tool for controlling hybrid collagen-silica material properties by controlling local silica condensation rates.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: rickus@purdue.edu
Footnotes
Hide All

Contributing Editor: Laurie Gower

Footnotes
References
Hide All
1. JarochD., McLamoreE., ZhangW., ShiJ., GarlandJ., BanksM.K., PorterfieldD.M., and RickusJ.L.: Cell-mediated deposition of porous silica on bacterial biofilms. Biotechnol. Bioeng. 108, 22492260 (2011).
2. JarochD.B., LuJ., MadangopalR., StullN.D., StensbergM., ShiJ., KahnJ.L., Herrera-PerezR., ZeitchekM., SturgisJ., RobinsonJ.P., YoderM.C., PorterfieldD.M., MirmiraR.G., and RickusJ.L.: Mouse and human islets survive and function after coating by biosilicification. Am. J. Physiol.: Endocrinol. Metab. 305, E1230E1240 (2013).
3. GarciaA.P., SenD., and BuehlerM.J.: Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metall. Mater. Trans. A 42, 38893897 (2011).
4. LosicD., MitchellJ.G., and VoelckerN.H.: Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 21, 29472958 (2009).
5. ZhaoD., JianglinF., HuoQ., MeloshN., FredricksonG.H., ChmelkaB.F., and StuckyG.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548552 (1998).
6. BeckJ.S., VartuliJ.C., RothW.J., LeonowiczM.E., KresgeC.T., SchmittK.D., ChuC.T-W., OlsonD.H., SheppardE.W., McCullenS.B., HigginsJ.B., and SchlenkerJ.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 1083410843 (1992).
7. EllerbyL.M., NishidaC.R., NishidaF., YamanakaS.A., DunnB., ValentineJ.S., and ZinkJ.I.: Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255, 11131115 (1992).
8. BrinkerC.J. and SchererG.W.: Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic Press, Boston, 1990).
9. IlerR.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley-Interscience, 1979).
10. BrinkerC.J., SehgalR., HietalaS.L., DeshpandeR., SmithD.M., LoyD., and AshleyC.S.: Sol-gel strategies for controlled porosity inorganic materials. J. Membr. Sci. 94, 85102 (1994).
11. ToblerD.J., ShawS., and BenningL.G.: Quantification of initial steps of nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. Geochim. Cosmochim. Acta 73, 53775393 (2009).
12. BeltonD.J., DeschaumeO., PatwardhanS.V., and PerryC.C.: A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification. J. Phys. Chem. B 114, 99479955 (2010).
13. PatwardhanS.V., EmamiF.S., BerryR.J., JonesS.E., NaikR.R., DeschaumeO., HeinzH., and PerryC.C.: Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 134, 62446256 (2012).
14. CoradinT., NassifN., and LivageJ.: Silica-alginate composites for microencapsulation. Appl. Microbiol. Biotechnol. 61, 429434 (2003).
15. WallaceA.F., DeYoreoJ.J., and DoveP.M.: Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization. J. Am. Chem. Soc. 131, 52445250 (2009).
16. CoradinT. and LivageJ.: Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf., B 21, 329336 (2001).
17. HeckyR.E., MopperK., KilhamP., and DegensE.T.: The amino acid and sugar composition of diatom cell-walls. Mar. Biol. 19, 323331 (1973).
18. ShimizuK., ChaJ., StuckyG.D., and MorseD.E.: Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. U. S. A. 95, 62346238 (1998).
19. SumperM. and BrunnerE.: Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv. Funct. Mater. 16, 1726 (2006).
20. MüllerW.E.G., SchröderH.C., BurghardZ., PisignanoD., and WangX.: Silicateins-a novel paradigm in bioinorganic chemistry: Enzymatic synthesis of inorganic polymeric silica. Chem. Lett. 19, 57905804 (2013).
21. BirchallJ.D.: The essentiality of silicon in biology. Chem. Soc. Rev. 24, 351 (1995).
22. EhrlichH., DeutzmannR., BrunnerE., CappelliniE., KoonH., SolazzoC., YangY., AshfordD., Thomas-OatesJ., LubeckM., BaessmannC., LangrockT., HoffmannR., WörheideG., ReitnerJ., SimonP., TsurkanM., EreskovskyA.V., KurekD., BazhenovV.V., HunoldtS., MertigM., VyalikhD.V., MolodtsovS.L., KummerK., WorchH., SmetacekV., and CollinsM.J.: Mineralization of the metre-long biosilicastructures of glass sponges is templatedon hydroxylated collagen. Nat. Chem. 2, 10841088 (2010).
23. OnoY., KanekiyoY., InoueK., HojoJ., NangoM., and ShinkaiS.: Preparation of novel hollow fiber silica using collagen fibers as a template. Chem. Lett. 6, 475476 (1999).
24. HeinemannS., EhrlichH., KniebC., and HankeT.: Biomimetically inspired hybrid materials based on silicified collagen. Int. J. Mater. Res. 98, 603608 (2007).
25. KahnJ.L., ErenN.M., CampanellaO., Voytik-HarbinS.L., and RickusJ.L.: Organic hydrogel templates for tunable mesoporous silica hybrid materials. MRS Proc. 1721, doi: 10.1556/opl.2015.38 (2015).
26. NiuL-N., JiaoK., QiY-P., YiuC.K.Y., RyouH., ArolaD.D., ChenJ-H., BreschiL., PashleyD.H., and TayF.R.: Infiltration of silica inside fibrillar collagen. Angew. Chem. Int. Ed. 50, 1168811691 (2011).
27. ShouldersM.D. and RainesR.T.: Collagen structure and stability. Annu. Rev. Biochem. 78, 929958 (2009).
28. RamshawJ.A.M., ShahN.K., and BrodskyB.: Gly-X-Y tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 122, 8691 (1998).
29. BaileyJ.L., CritserP.J., WhittingtonC., KuskeJ.L., YoderM.C., and Voytik-HarbinS.L.: Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices. Biopolymers 95, 7793 (2011).
30. KregerS.T., BellB.J., BaileyJ., StitesE., KuskeJ., WaisnerB., and Voytik-HarbinS.L.: Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93, 690707 (2010).
31. KadlerK.E., HolmesD.F., TrotterJ.A., and ChapmanJ.A.: Collagen fibril formation. Biochem. J. 316, 111 (1996).
32. RamadassS.K., PerumalS., GopinathA., NisalA., SubramanianS., and MadhanB.: Sol–gel assisted fabrication of collagen hydrolysate composite scaffold: A novel therapeutic alternative to the traditional collagen scaffold. ACS Appl. Mater. Interfaces 6, 1501515025 (2014).
33. JingS., JiangD., WenS., WangJ., and YangC.: Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. J. Porous Mater. 21, 699708 (2014).
34. HeinemannS., HeinemannC., WenischS., AltV., WorchH., and HankeT.: Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteblast/osteclast ratio in a human co-culture model. Acta Biomater. 9, 48784888 (2013).
35. WangX., SchloßmacherU., SchröderH.C., and MüllerW.E.G.: Biologically induced transition of bio-silica sol to mesoscopic gelatinous flocs: A biomimetic approach to a controlled fabrication of bio-silica structures. Soft Matter 9, 654664 (2013).
36. NiuL-N., JiaoK., RyouH., DiogenesA., YiuC.K.Y., MazzoniA., ChenJ-H., ArolaD.D., HargreavesK.M., PashleyD.H., and TayF.R.: Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules 14, 16611668 (2013).
37. BrightmanA.O., RajwaB.P., SturgisJ.E., McCallisterM.E., RobinsonJ.P., and Voytik-HarbinS.L.: Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54, 222234 (2000).
38. MarottaM. and MartinoG.: Sensitive spectrophotometric method for the quantitative estimation of collagen. Anal. Biochem. 150, 8690 (1985).
39. ASTM F3089-14: Standard Guide for Characterization and Standardization of Polymerizable Collagen-Based Products and Associated Collagen-Cell Interactions (ASTM International, West Conshohocken, PA, 2014).
40. CoradinT., EglinD., and LivageJ.: The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy 18, 567576 (2004).
41. HarrisonC.C. and LotonN.: Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6 H4O2)3]·xH2O. Faraday Trans. 91, 42874297 (1995).
42. WhittingtonC.F., BrandnerE., TeoK.Y., HanB., NaumanE., and Voytik-HarbinS.L.: Oligomers modulate interfibril branching and mass transport properties of collagen matrices. Microsc. Microanal. 19, 13231333 (2013).
43. NudelmanF., PieterseK., GeorgeA., BomansP.H.H., FriedrichH., BrylkaL.J., HilbersP.A.J., de WithG., and SommerdijkN.A.J.M.: The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 10041009 (2010).
44. EglinD., ShafranK.L., LivageJ., CoradinT., and PerryC.C.: Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on “Si” speciation and condensation. J. Mater. Chem. 16, 42204230 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Kahn supplementary material
Table S1 and Figures S1-S2

 Word (327 KB)
327 KB

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 245 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.