Skip to main content
×
Home
    • Aa
    • Aa

Collagen-fibril matrix properties modulate the kinetics of silica polycondensation to template and direct biomineralization

  • Jennifer L. Kahn (a1), Necla Mine Eren (a2), Osvaldo Campanella (a2), Sherry L. Voytik-Harbin (a3) and Jenna L. Rickus (a4)...
Abstract
Abstract

Fibrillar collagen networks template and direct biocompatible silica mineralization to produce hybrid materials for biomedical applications. Silica mineralization kinetics is critical for precision-tuning material properties, including mechanical strength, microstructure, and interface thickness. We investigated the effect of varying collagen template fibril volume fraction (0.2–0.8) and elasticity (G′ 200–1500 Pa) on silica mineralization rates. Measurement of the depletion of mono- and disilicic acids by silicomolybdic acid titration showed that silica condensation on collagen fibrils follows third-order kinetics. Resulting third-order rate constants increased linearly with storage modulus and quadratically with fibril volume fraction. A unique rheological approach used to probe the collagen template surface elasticity in real-time during silicification suggested a two-phase mechanism with high levels of surface-localized gelation in Phase 1 and high levels of bulk solution-localized gelation in Phase 2. These results provide a tool for controlling hybrid collagen-silica material properties by controlling local silica condensation rates.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: rickus@purdue.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Jaroch , E. McLamore , W. Zhang , J. Shi , J. Garland , M.K. Banks , D.M. Porterfield , and J.L. Rickus : Cell-mediated deposition of porous silica on bacterial biofilms. Biotechnol. Bioeng. 108, 22492260 (2011).

A.P. Garcia , D. Sen , and M.J. Buehler : Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metall. Mater. Trans. A 42, 38893897 (2011).

D. Losic , J.G. Mitchell , and N.H. Voelcker : Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 21, 29472958 (2009).

D. Zhao , F. Jianglin , Q. Huo , N. Melosh , G.H. Fredrickson , B.F. Chmelka , and G.D. Stucky : Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548552 (1998).

J.S. Beck , J.C. Vartuli , W.J. Roth , M.E. Leonowicz , C.T. Kresge , K.D. Schmitt , C.T-W. Chu , D.H. Olson , E.W. Sheppard , S.B. McCullen , J.B. Higgins , and J.L. Schlenker : A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 1083410843 (1992).

L.M. Ellerby , C.R. Nishida , F. Nishida , S.A. Yamanaka , B. Dunn , J.S. Valentine , and J.I. Zink : Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255, 11131115 (1992).

C.J. Brinker and G.W. Scherer : Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic Press, Boston, 1990).

C.J. Brinker , R. Sehgal , S.L. Hietala , R. Deshpande , D.M. Smith , D. Loy , and C.S. Ashley : Sol-gel strategies for controlled porosity inorganic materials. J. Membr. Sci. 94, 85102 (1994).

D.J. Tobler , S. Shaw , and L.G. Benning : Quantification of initial steps of nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. Geochim. Cosmochim. Acta 73, 53775393 (2009).

D.J. Belton , O. Deschaume , S.V. Patwardhan , and C.C. Perry : A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification. J. Phys. Chem. B 114, 99479955 (2010).

S.V. Patwardhan , F.S. Emami , R.J. Berry , S.E. Jones , R.R. Naik , O. Deschaume , H. Heinz , and C.C. Perry : Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 134, 62446256 (2012).

T. Coradin , N. Nassif , and J. Livage : Silica-alginate composites for microencapsulation. Appl. Microbiol. Biotechnol. 61, 429434 (2003).

A.F. Wallace , J.J. DeYoreo , and P.M. Dove : Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization. J. Am. Chem. Soc. 131, 52445250 (2009).

T. Coradin and J. Livage : Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf., B 21, 329336 (2001).

R.E. Hecky , K. Mopper , P. Kilham , and E.T. Degens : The amino acid and sugar composition of diatom cell-walls. Mar. Biol. 19, 323331 (1973).

K. Shimizu , J. Cha , G.D. Stucky , and D.E. Morse : Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. U. S. A. 95, 62346238 (1998).

M. Sumper and E. Brunner : Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv. Funct. Mater. 16, 1726 (2006).

J.D. Birchall : The essentiality of silicon in biology. Chem. Soc. Rev. 24, 351 (1995).

H. Ehrlich , R. Deutzmann , E. Brunner , E. Cappellini , H. Koon , C. Solazzo , Y. Yang , D. Ashford , J. Thomas-Oates , M. Lubeck , C. Baessmann , T. Langrock , R. Hoffmann , G. Wörheide , J. Reitner , P. Simon , M. Tsurkan , A.V. Ereskovsky , D. Kurek , V.V. Bazhenov , S. Hunoldt , M. Mertig , D.V. Vyalikh , S.L. Molodtsov , K. Kummer , H. Worch , V. Smetacek , and M.J. Collins : Mineralization of the metre-long biosilicastructures of glass sponges is templatedon hydroxylated collagen. Nat. Chem. 2, 10841088 (2010).

S. Heinemann , H. Ehrlich , C. Knieb , and T. Hanke : Biomimetically inspired hybrid materials based on silicified collagen. Int. J. Mater. Res. 98, 603608 (2007).

J.L. Kahn , N.M. Eren , O. Campanella , S.L. Voytik-Harbin , and J.L. Rickus : Organic hydrogel templates for tunable mesoporous silica hybrid materials. MRS Proc. 1721, doi: 10.1556/opl.2015.38 (2015).

L-N. Niu , K. Jiao , Y-P. Qi , C.K.Y. Yiu , H. Ryou , D.D. Arola , J-H. Chen , L. Breschi , D.H. Pashley , and F.R. Tay : Infiltration of silica inside fibrillar collagen. Angew. Chem. Int. Ed. 50, 1168811691 (2011).

M.D. Shoulders and R.T. Raines : Collagen structure and stability. Annu. Rev. Biochem. 78, 929958 (2009).

J.A.M. Ramshaw , N.K. Shah , and B. Brodsky : Gly-X-Y tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 122, 8691 (1998).

J.L. Bailey , P.J. Critser , C. Whittington , J.L. Kuske , M.C. Yoder , and S.L. Voytik-Harbin : Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices. Biopolymers 95, 7793 (2011).

K.E. Kadler , D.F. Holmes , J.A. Trotter , and J.A. Chapman : Collagen fibril formation. Biochem. J. 316, 111 (1996).

S. Jing , D. Jiang , S. Wen , J. Wang , and C. Yang : Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. J. Porous Mater. 21, 699708 (2014).

S. Heinemann , C. Heinemann , S. Wenisch , V. Alt , H. Worch , and T. Hanke : Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteblast/osteclast ratio in a human co-culture model. Acta Biomater. 9, 48784888 (2013).

X. Wang , U. Schloßmacher , H.C. Schröder , and W.E.G. Müller : Biologically induced transition of bio-silica sol to mesoscopic gelatinous flocs: A biomimetic approach to a controlled fabrication of bio-silica structures. Soft Matter 9, 654664 (2013).

L-N. Niu , K. Jiao , H. Ryou , A. Diogenes , C.K.Y. Yiu , A. Mazzoni , J-H. Chen , D.D. Arola , K.M. Hargreaves , D.H. Pashley , and F.R. Tay : Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules 14, 16611668 (2013).

A.O. Brightman , B.P. Rajwa , J.E. Sturgis , M.E. McCallister , J.P. Robinson , and S.L. Voytik-Harbin : Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54, 222234 (2000).

M. Marotta and G. Martino : Sensitive spectrophotometric method for the quantitative estimation of collagen. Anal. Biochem. 150, 8690 (1985).

T. Coradin , D. Eglin , and J. Livage : The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy 18, 567576 (2004).

C.C. Harrison and N. Loton : Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6 H4O2)3]·xH2O. Faraday Trans. 91, 42874297 (1995).

F. Nudelman , K. Pieterse , A. George , P.H.H. Bomans , H. Friedrich , L.J. Brylka , P.A.J. Hilbers , G. de With , and N.A.J.M. Sommerdijk : The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 10041009 (2010).

D. Eglin , K.L. Shafran , J. Livage , T. Coradin , and C.C. Perry : Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on “Si” speciation and condensation. J. Mater. Chem. 16, 42204230 (2006).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Kahn supplementary material
Table S1 and Figures S1-S2

 Word (327 KB)
327 KB

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 178 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.