Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T22:53:59.070Z Has data issue: false hasContentIssue false

Combinatorial synthesis of oxide powders

Published online by Cambridge University Press:  31 January 2011

H. M. Reichenbach
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
P. J. McGinn
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
Get access

Abstract

Combinatorial libraries of the mixed oxide system Cu1−xCexO3 (0 ≤ x ≤ 1) have been generated using a modified Pechini powder synthesis process in conjunction with inkjet deposition. Mixed oxide crystalline powders were formed at temperatures below 500 °C. These powders have particle sizes in the range of 20.0 to 85.5 nm, and the powder surface area increases with cerium content. In addition, each of the mixed oxides (0 < x < 1) displayed catalytic activity in the CO oxidation reaction at temperatures between 150 and 350 °C. This novel protocol has also been used to generate a library of oxide powders of the perovskite-like La1−xSrxCoO3?δ system. The La–Sr–Co–O system from this protocol exhibits lower average surface areas than the Cu–Ce–O system (approximately 11.2 m2/g) due to higher decomposition temperatures but still acts as an active catalyst for the CO oxidation reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sun, X-D., Wang, K-A., Yoo, Y., Wallace-Freedman, W.G., Gao, C., Xiang, X-D., and Schultz, P.G., Adv. Mater. 9, 1046 (1997).CrossRefGoogle Scholar
2.Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., and Wu, X.D., Science 279, 837 (1998).CrossRefGoogle Scholar
3.van Dover, R.B., Schneemeyer, L.F., and Fleming, R.M., Nature 392, 162 (1998).CrossRefGoogle Scholar
4.Moates, F.C., Somani, M., Annamalai, J., Richardson, J.T., Luss, D., and Wilson, R.C., Ind. Eng. and Chem. Res. 35, 4801 (1996).CrossRefGoogle Scholar
5.Briceño, G., Chang, H., Sun, X., Schultz, P.G., and Xiang, X-D., Science 270, 273 (1995).CrossRefGoogle Scholar
6.Xiang, X-D., Sun, X., Briceño, G., Lou, Y., Wang, K-A., Chang, H., Wallace-Freedman, W.G., Chen, S-W., and Schultz, P.G., Science 268, 1738 (1995).CrossRefGoogle Scholar
7.Taylor, S.J. and Morken, J.P., Science 280, 267 (1998).CrossRefGoogle Scholar
8.Holzwarth, A., Schmidt, H-W., and Maier, W.F., Angew. Chemie Int. Ed. 37, 2644 (1998).3.0.CO;2-#>CrossRefGoogle Scholar
9.Klein, J., Lehmann, C.W., Schmidt, H-W., and Maier, W.F., Angew. Chemie Int. Ed. 37, 3369 (1998).3.0.CO;2-H>CrossRefGoogle Scholar
10.Reddington, E., Sapienza, A., Gurau, B., Viswanathan, R., Sarangapani, S., Smotkin, E.S., and Mallouk, T.E., Science 280, 1735 (1998).CrossRefGoogle Scholar
11.Pechini, M.P., U.S. Patent No. 3 330 697 (July 11, 1967).CrossRefGoogle Scholar
12.Tai, L-W. and Lessing, P.A., J. Mater. Res. 7, 502 (1992).CrossRefGoogle Scholar
13.Tai, L-W. and Lessing, P.A., J. Mater. Res. 7, 511 (1992).CrossRefGoogle Scholar
14.Paris, E.C., Leite, E.R., Longo, E., and Varela, J.A., Mater. Lett. 37, 1 (1998).CrossRefGoogle Scholar
15.Gülgün, M.A., Nguyen, M.H., and Kriven, W.M., J. Am. Ceram. Soc. 82, 556 (1999).CrossRefGoogle Scholar
16.Akporiaye, D.E., Dahl, I.M., Karlsson, A., and Wendelbo, R., Angew. Chemie Int. Ed. 37, 609 (1998).3.0.CO;2-X>CrossRefGoogle Scholar
17.Señaris-Rodriguez, M.A. and Goodenough, J.B., J. Solid State Chem. 118, 323 (1995).CrossRefGoogle Scholar
18.Seiyama, T., Catal. Rev. – Sci. Eng. 34, 281 (1992).CrossRefGoogle Scholar
19.Doshi, R., Alcock, C.B., and Carberry, J.J., Catal. Lett. 18, 337 (1993).CrossRefGoogle Scholar
20.Reichenbach, H.M. and McGinn, P.J. (unpublished).Google Scholar