Skip to main content
    • Aa
    • Aa

Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films

  • R. W. Schwartz (a1), J. A. Voigt (a1), B. A. Tuttle (a1), D. A. Payne (a2), T. L. Reichert (a1) and R. S. DaSalla (a1)...

Lead zirconate titanate (PZT 40/60) thin films were fabricated on electroded silicon wafers using chemical solution deposition. Two different chelating agents, acetic acid and acetylacetone, were used in the synthesis of the precursor solutions. The microstructure of the acetylacetone-derived film was characterized by nucleation at the platinum electrode and a columnar growth morphology (˜100−200 nm lateral grain size). In contrast, the acetic acid-derived film was characterized by both columnar grains nucleated at the electrode, and larger (˜1 μm) grains nucleated at the surface of the film. Using Fourier transform infrared (FTIR) diffuse reflectance spectroscopy, we also noted that the pyrolysis behavior of the films was dependent on the chelating agent employed. The acetylacetone-derived films, which displayed only one nucleation event, were also characterized by a higher pyrolysis temperature than the acetic acid-derived films. Previously, microstructural differences of this nature were attributed to variations in “precursor structure.” In this paper, we discuss an alternative mechanism for the observed microstructural variations in films prepared from different solution precursors. In the model proposed, we discuss how changes in film pyrolysis temperature result in a change in film crystallization temperature, and hence, a change in the effective driving force for crystallization. We show how the change in crystallization driving force is expected to impact the thin film microstructure due to the accompanying variations that occur in the barrier heights for interface (lower electrode) and surface nucleation. A standard approach to nucleation in glasses is used as the basis of the proposed model. Finally, we also discuss how the model can be used to understand the observed effects of heating rate and thickness on the microstructure of solution-derived thin films.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. D. Dimos , S. J. Lockwood , R. W. Schwartz , and M. S. Rodgers , IEEE Trans. on Components, Packaging, and Manufacturing Tech. A 18, 174 (1995).

2. J. F. Scott and C. A. Paz de Araujo , Science 246, 1400 (1989).

3. C. E. Land , J. Am. Ceram. Soc. 71 (11), 905 (1988).

4. R. W. Vest and J. Xu , Ferroelectrics 93, 21 (1989).

7. G. Yi , Z. Wu , and M. Sayer , J. Appl. Phys. 64 (5), 2717 (1988).

8. R. W. Schwartz , B. C. Bunker , D. B. Dimos , R. A. Assink , B. A. Tuttle , D. R. Tallant , and I. A. Weinstock , Integrated Ferro. 2, 243 (1992).

9. C. Chen , D. F. Ryder , Jr., and W. A. Spurgeon , J. Am. Ceram. Soc. 72 (8), 1495 (1989).

10. C. D. E. Lakeman and D. A. Payne , J. Am. Ceram. Soc. 75 (11), 3091 (1992).

11. R. W. Schwartz , T. J. Boyle , S. J. Lockwood , M. B. Sinclair , D. Dimos , and C. D. Buchheit , Integrated Ferro. 7, 259 (1995).

12. K. Kushida , K. R. Udayakumar , S. B. Krupanidhi , and L. E. Cross , J. Am. Ceram. Soc. 76 (5), 1345 (1989).

14. K. Nashimoto and S. Nakamura , Jpn. J. Appl. Phys. 33, Pt. 1, No. 9B, 5147 (1994).

15. S. Ramamurthi and D. A. Payne , J. Am. Ceram. Soc. 73 (8), 2547 (1990).

17. P. R. Coffman and S. K. Dey , J. Sol-Gel Sci. Technol. 1, 251 (1994).

19. R. A. Assink and R. W. Schwartz , Chem. Mater. 5 (4), 511 (1993).

20. R. W. Schwartz , R. A. Assink , D. Dimos , M. B. Sinclair , T. J. Boyle , and C. D. Buchheit , in Ferroelectric Thin Films IV, edited by S. B. Desu , B. A. Tuttle , R. Ramesh , and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 377387.

21. B. A. Tuttle , J. A. Voigt , D. C. Goodnow , D. L. Lamppa , T. J. Headley , M. O. Eatough , G. Zender , R. D. Nasby , and S. M. Rodgers , J. Am. Ceram. Soc. 76 (6), 1537 (1989).

23. R. W. Schwartz , J. A. Voigt , T. J. Boyle , T. A. Christenson , and C. D. Buchheit , Ceram. Eng. Sci. Proc. 16 (5), 1045 (1995).

26. R. Roy , J. Am. Ceram. Soc. 52, 344 (1969).

28. A. P. Wilkinson , J. S. Speck , A. K. Cheetham , S. Natarajan , and J. M. Thomas , Chem. Mater. 6 (6), 750 (1994).

29. J. A. Voigt , B. A. Tuttle , T. J. Headley , and D. L. Lamppa , in Ferroelectric Thin Films IV, edited by S. B. Desu , B. A. Tuttle , R. Ramesh , and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 395402.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 122 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.