Skip to main content
×
Home

A comparative study of electrochemical, optical properties and electropolymerization behavior of thiophene- and furan-substituted diketopyrrolopyrrole

  • Supreetha Paleyanda Ponnappa (a1), Sivanesan Arumugam (a1), Henry J. Spratt (a2), Sergei Manzhos (a3), Anthony P. O’Mullane (a1), Godwin A. Ayoko (a1) and Prashant Sonar (a1)...
Abstract
Abstract

Electropolymerization is a promising approach to produce thin films of active organic conjugated materials on a desired conducting substrate. In this work, an electropolymerization study has been carried out on two diketopyrrolopyrrole (DPP)-based monomers 2,5-bis(2-butyloctyl)-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPF) and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPT). These monomers consist of thiophene and furan heterocyclic moieties attached to a DPP core with a common solubilizing alkyl chain (butyl-octyl). The properties of these monomers were analyzed via differential scanning calorimetry, thermogravimetric analysis, UV–Vis spectrometry (UV) and photoluminescence. Cyclic voltammetry (CV) studies indicate the presence of irreversible oxidation and reduction reactions. The electropolymerization of BO-DPPF and BO-DPPT electron-deficient monomers to form polymer films on a glassy carbon electrode is achieved by applying a potential between −2 V and 2 V versus ferrocene for up to 50 cycles. The properties of the polymers were investigated using the cyclic voltammetry (CV) technique.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: Sivanesan.Arumugam@unisa.edu.au
b) e-mail: Sonarpm74@gmail.com
Footnotes
Hide All
c) Current Address: Future Industries Institute, University of South Australia, Adelaide, Australia
Contributing Editor: Erik G. Herbert
Footnotes
References
Hide All
1. Iqbal A., Jost M., Kirchmayr R., Pfenninger J., Rochat A., and Wallquist O.: The synthesis and properties of 1,4-diketo-pyrrolo[3,4-C] pyrroles. Bull. Soc. Chim. Belg. 97(8–9), 615 (1988).
2. Li Y., Singh S.P., and Sonar P.: A high mobility P-type DPP-thieno[3,2-b] thiophene copolymer for organic thin-film transistors. Adv. Mater. 22(43), 4862 (2010).
3. Yi Z., Wang S., and Liu Y.: Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 27(24), 3589 (2015).
4. Li Y., Sonar P., Murphy L., and Hong W.: High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 6(6), 1684 (2013).
5. Kanimozhi C., Balraju P., Sharma G., and Patil S.: Synthesis of diketopyrrolopyrrole containing copolymers: A study of their optical and photovoltaic properties. J. Phys. Chem. B 114(9), 3095 (2010).
6. Qu S. and Tian H.: Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 48(25), 3039 (2012).
7. Fenwick O., Fusco S., Baig T., Di Stasio F., Steckler T., Henriksson P., Fléchon C., Andersson M.R., and Cacialli F.: Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Mater. 1(3), 032108 (2013).
8. Wolfbeis O.S.: Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 15(27–28), 2657 (2005).
9. Qu Y., Hua J., and Tian H.: Colorimetric and ratiometric red fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Org. Lett. 12(15), 3320 (2010).
10. Zhou Y., Han S-T., Sonar P., and Roy V.: Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3, 2319 (2013).
11. Zhu Y.: New Diketopyrrolopyrrole (DPP)-Based Conjugated Polymers Prepared Upon Palladium Catalyzed Polymerization and Electropolymerization Reactions (Universität zu Köln, China, 2006).
12. Zhu Y., Zhang K., and Tieke B.: Electrochemical polymerization of bis(3,4-ethylenedioxythiophene)-substituted 1,4-diketo-3,6-diphenyl-pyrrolo[3,4-c] pyrrole (DPP) derivative. Macromol. Chem. Phys. 210(6), 431 (2009).
13. Adamcová Z. and Dempírová L.: Film-forming electropolymerization. Prog. Org. Coat. 16(4), 295 (1989).
14. Liu C., Luo H., Shi G., Yang J., Chi Z., and Ma Y.: Luminescent network film deposited electrochemically from a carbazole functionalized AIE molecule and its application for OLEDs. J. Mater. Chem. C 3(15), 3752 (2015).
15. Zhang F., Petr A., Kirbach U., and Dunsch L.: Improved hole injection and performance of multilayer OLED devices via electrochemically prepared-polybithiophene layers. J. Mater. Chem. 13(2), 265 (2003).
16. Yu W., Xu B., Dong Q., Zhou Y., Zhang J., Tian W., and Yang B.: A two-step method combining electrodepositing and spin coating for solar cell processing. J. Solid State Electrochem. 14(6), 1051 (2010).
17. Palma-Cando A. and Scherf U.: Electrogenerated thin films of microporous polymer networks with remarkably increased electrochemical response to nitroaromatic analytes. ACS Appl. Mater. Interfaces 7(21), 11127 (2015).
18. You J., Li G., Wang R., Nie Q., Wang Z., and Li J.: Pyrene-cored dendrimer with carbazole derivatives as dendrons: Synthesis, properties and application in white light-emitting diode. Phys. Chem. Chem. Phys. 13(39), 17825 (2011).
19. Dhar J., Venkatramaiah N., Anitha A., and Patil S.: Photo physical, electrochemical and solid-state properties of diketopyrrolopyrrole based molecular materials: importance of the donor group. J. Mater. Chem. C 2(17), 3457 (2014).
20. Sonar P., Chang J., Shi Z., Gann E., Li J., Wu J., and McNeill C.R.: Hole mobility of 3.56 cm2 V−1 s−1 accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. J. Mater. Chem. C 3(36), 9299 (2015).
21. Li Y., Sonar P., Singh S.P., Ooi Z.E., Lek E.S.H., and Loh M.Q.Y.: Poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene): A high performance polymer semiconductor for both organic thin film transistors and organic photovoltaics. Phys. Chem. Chem. Phys. 14(19), 7162 (2012).
22. Bijleveld J.C., Karsten B.P., Mathijssen S.G., Wienk M.M., de Leeuw D.M., and Janssen R.A.: Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. J. Mater. Chem. 21(5), 1600 (2011).
23. Woo C.H., Beaujuge P.M., Holcombe T.W., Lee O.P., and Fréchet J.M.: Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc. 132(44), 15547 (2010).
24. Li Y., Sonar P., Singh S.P., Zeng W., and Soh M.S.: 3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione and bithiophene copolymer with rather disordered chain orientation showing high mobility in organic thin film transistors. J. Mater. Chem. 21(29), 10829 (2011).
25. Sonar P., Zhuo J.M., Zhao L.H., Lim K.M., Chen J., Rondinone A.J., Singh S.P., Chua L.L., Ho P.K.H., and Dodabalapur A.: Furan substituted diketopyrrolopyrrole and thienylenevinylene based low band gap copolymer for high mobility organic thin film transistors. J. Mater. Chem. 22(33), 17284 (2012).
26. Welterlich I., Neudörfl J-M., and Tieke B.: Electrochemical polymerization of 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP) derivatives. Polym. Chem. 6(6), 1005 (2015).
27. Huang J., Jia H., Li L., Lu Z., Zhang W., He W., Jiang B., Tang A., Tan Z.a., and Zhan C.: Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Phys. Chem. Chem. Phys. 14(41), 14238 (2012).
28. Zhang K., Tieke B., Forgie J.C., and Skabara P.J.: Electrochemical polymerisation of N-arylated and N-alkylated EDOT-substituted pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) derivatives: Influence of substitution pattern on optical and electronic properties. Macromol. Rapid Commun. 30(21), 1834 (2009).
29. Sheberla D., Patra S., Wijsboom Y.H., Sharma S., Sheynin Y., Haj-Yahia A-E., Barak A.H., Gidron O., and Bendikov M.: Conducting polyfurans by electropolymerization of oligofurans. Chem. Sci. 6(1), 360 (2015).
30. Li Y., Sonar P., Singh S.P., Soh M.S., Van Meurs M., and Tan J.: Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133(7), 2198 (2011).
31. Kohn W. and Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965).
32. Hohenberg P. and Kohn W.: Inhomogeneous electron gas Phys Rev. 136(3B), B864 (1964).
33. Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., and Petersson G.: Gaussian 09, Gaussian Inc., Wallingford, CT. 4 (2009).
34. Becke A.d.: Becke’s 3 parameter functional combined with the non-local correlation LYP. J. Chem. Phys. 98, 5648 (1993).
35. Dunning T.H. Jr. and Hay P.J.: In Modern Theoretical Chemistry, Vol. 3, H.F. Schaefer, ed. (Plenum Press, New York, 1977); p. 189.
36. Check C.E., Faust T.O., Bailey J.M., Wright B.J., Gilbert T.M., and Sunderlin L.S.: Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. J. Phys. Chem. A 105(34), 8111 (2001).
37. Mennucci B.: Polarizable continuum model. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(3), 386 (2012).
38. Casida M.E.: Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct.: THEOCHEM 914(1), 3 (2009).
39. Bronstein H., Chen Z., Ashraf R.S., Zhang W., Du J., Durrant J.R., Shakya Tuladhar P., Song K., Watkins S.E., and Geerts Y.: Thieno [3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133(10), 3272 (2011).
40. Zou Y., Gendron D., Neagu-Plesu R., and Leclerc M.: Synthesis and characterization of new low-bandgap diketopyrrolopyrrole-based copolymers. Macromolecules 42(17), 6361 (2009).
41. Grzybowski M. and Gryko D.T.: Diketopyrrolopyrroles: Synthesis, reactivity, and optical properties. Adv. Opt. Mater. 3(3), 280 (2015).
42. Sonar P., Ha T.J., Seohee K., and Manzhos S.: Comparative study of furan and thiophene furan flanked diketopyrrolopyrrole based small molecules and their organic field effect transistor performance. J. Mater. Res., submitted.
43. Rabus D.G.: Optofulidic System Technology, Vol. 82 (Walter de Gruyter GmbH, Berlin, 2014).
44. Liu J., Walker B., Tamayo A., Zhang Y., and Nguyen T.Q.: Effects of heteroatom substitutions on the crystal structure, film formation, and optoelectronic properties of diketopyrrolopyrrole-based materials. Adv. Funct. Mater. 23(1), 47 (2013).
45. Sanford W.E. and Boyd R.K.: Molecular reorientation in crystalline thiophene and furan. Can. J. Chem. 54(17), 2773 (1976).
46. Cosnier S. and Karyakin A.: Electropolymerization: Concepts, Materials and Applications (John Wiley & Sons, New York, 2011).
47. Ripaud E., Demeter D., Rousseau T., Boucard-Cétol E., Allain M., Po R., Leriche P., and Roncali J.: Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics. Dyes Pigm. 95(1), 126 (2012).
48. Chandran D., Marszalek T., Zajaczkowski W., Madathil P.K., Vijayaraghavan R.K., Koh Y-H., Park S-y., Ochsmann J.R., Pisula W., and Lee K-S.: Thin film morphology and charge carrier mobility of diketopyrrolopyrrole based conjugated polymers. Polymer 73, 205 (2015).
49. Leonat L., Sbarcea G., and Branzoi I.V.: Cyclic voltammetry for energy levels estimation of organic materials. Chem. Mater. Sci. 75(3), 111 (2013).
50. Li Y., Sun B., Sonar P., and Singh S.P.: Solution processable poly(2,5-dialkyl-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione) for ambipolar organic thin film transistors. Org. Electron. 13(9), 1606 (2012).
51. Johansson T., Mammo W., Svensson M., Andersson M.R., and Inganäs O.: Electrochemical bandgaps of substituted polythiophenes. J. Mater. Chem. 13(6), 1316 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Ponnappa supplementary material
Ponnappa supplementary material 1

 Word (1.6 MB)
1.6 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 30
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 456 *
Loading metrics...

* Views captured on Cambridge Core between 7th February 2017 - 11th December 2017. This data will be updated every 24 hours.