Skip to main content
×
×
Home

Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses

  • Petre Flaviu Gostin (a1), Dimitri Eigel (a2), Daniel Grell (a3), Jürgen Eckert (a4), Eberhard Kerscher (a5) and Annett Gebert (a6)...
Abstract

Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: f.p.gostin@ifw-dresden.de
Footnotes
Hide All
b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Footnotes
References
Hide All
1. Suryanarayana, C. and Inoue, A.: Bulk Metallic Glasses (CRC Press, Boca Raton, 2011).
2. Gebert, A., Mummert, K., Eckert, J., and Schultz, L.: Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Mater. Corros. 48, 293 (1997).
3. Mondal, K., Murty, B.S., and Chatterjee, U.K.: Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments. Corros. Sci. 48, 2212 (2006).
4. Kamachi Mudali, U., Baunack, S., Eckert, J., Schultz, L., and Gebert, A.: Pitting corrosion of bulk glass-forming zirconium-based alloys. J. Alloys Compd. 377, 290 (2004).
5. Scully, J.R., Gebert, A., and Payer, J.: Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302 (2007).
6. Huang, L., Yokoyama, Y., Wu, W., Liaw, P.K., Pang, S.J., Inoue, A., Zhang, T., and He, W.: Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. J. Biomed. Mater. Res. B. Appl. Biomater. 100B, 1472 (2012).
7. Lu, H.B., Zhang, L.C., Gebert, A., and Schultz, L.: Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions. J. Alloys Compd. 462, 60 (2008).
8. Gebert, A., Kamachi Mudali, U., Eckert, J., and Schultz, L.: In Materials Research Society Symposium Proceedings (Materials Research Society, Warrendale, PA, 2004), p. 369379.
9. Green, B.A., Steward, R.V., Kim, I., Choi, C.K., Liaw, P.K., Kihm, K.D., and Yokoyama, Y.: In situ observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass. Intermetallics 17, 568 (2009).
10. Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L., Horton, J.A., Carmichael, C.A.J., and Wright, J.L.: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 (2002).
11. Morrison, M.L., Buchanan, R.A., Peker, A., Peter, W.H., Horton, J.A., and Liaw, P.K.: Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).
12. Pang, S.J., Zhang, T., Kimura, H., Asami, K., and Inoue, A.: Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys. Mater. Trans. JIM 41, 1490 (2000).
13. Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. J. Mater. Res. 18, 1652 (2003).
14. Raju, V.R., Kühn, U., Wolff, U., Schneider, F., Eckert, J., Reiche, R., and Gebert, A.: Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 57, 173 (2002).
15. Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., Fukuhara, M., Makino, A., and Inoue, A.: Effects of Ni addition on the glass-forming ability, mechanical properties and corrosion resistance of Zr–Cu–Al bulk metallic glasses. Mater. Sci. Eng., A 528, 8551 (2011).
16. Liu, Z., Huang, L., Wu, W., Luo, X., Shi, M., Liaw, P.K., He, W., and Zhang, T.: Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 363, 1 (2013).
17. Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).
18. Baunack, S., Kamachi Mudali, U., and Gebert, A.: Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling. Appl. Surf. Sci. 252, 162 (2005).
19. Green, B.A., Meyer, H.M., Benson, R.S., Yokoyama, Y., Liaw, P.K., and Liu, C.T.: A study of the corrosion behaviour of Zr50Cu(40−X)Al10PdX bulk metallic glasses with scanning Auger microanalysis. Corros. Sci. 50, 1825 (2008).
20. Hiromoto, S., Tsai, A.P., Sumita, M., and Hanawa, T.: Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci. 42, 1651 (2000).
21. Homazava, N., Shkabko, A., Logvinovich, D., Krähenbühl, U., and Ulrich, A.: Element-specific in situ corrosion behavior of Zr–Cu–Ni–Al–Nb bulk metallic glass in acidic media studied using a novel microcapillary flow injection inductively coupled plasma mass spectrometry technique. Intermetallics 16, 1066 (2008).
22. Nie, X.P., Xu, X.M., Jiang, Q.K., Chen, L.Y., Xu, Y., Fang, Y.Z., Xie, G.Q., Luo, M.F., Wu, F.M., Wang, X.D., Cao, Q.P., and Jiang, J.Z.: Effect of microalloying of Nb on corrosion resistance and thermal stability of ZrCu-based bulk metallic glasses. J. Non-Cryst. Solids 355, 203 (2009).
23. Liu, L., Qiu, C.L., Sun, M., Chen, Q., Chan, K.C., and Pang, G.K.H.: Improvements in the plasticity and biocompatibility of Zr–Cu–Ni–Al bulk metallic glass by the microalloying of Nb. Mater. Sci. Eng., A 449451, 193 (2007).
24. Asami, K., Habazaki, H., Inoue, A., and Hashimoto, K.: Recent development of highly corrosion resistant bulk glassy alloys. Mater. Sci. Forum 502, 225 (2005).
25. Gebert, A., Gostin, P.F., Uhlemann, M., Eckert, J., and Schultz, L.: Interactions between mechanically generated defects and corrosion phenomena of Zr-based bulk metallic glasses. Acta Mater. 60, 2300 (2012).
26. Tanimoto, H., Soga, Y., Takayanagi, Y., and Mizubayashi, H.: Dissolved-oxygen-induced intensive pitting corrosion of amorphous ZrCu alloys in thin NaCl solutions. Mater. Trans. 52, 1402 (2011).
27. Gebert, A., Kuehn, U., Baunack, S., Mattern, N., and Schultz, L.: Pitting corrosion of zirconium-based bulk glass-matrix composites. Mater. Sci. Eng., A 415, 242 (2006).
28. Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Comparison of the corrosion behaviour of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form. Scr. Mater. 38, 1481 (1998).
29. Long, Z., Wei, H., Ding, Y., Zhang, P., Xie, G., and Inoue, A.: A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloys Compd. 475, 207 (2009).
30. Kruzic, J.J.: Understanding the problem of fatigue in bulk metallic glasses. Metall. Mater. Trans. A 42, 1516 (2010).
31. Kawashima, A., Yokoyama, Y., and Inoue, A.: Zr-based bulk glassy alloy with improved resistance to stress corrosion cracking in sodium chloride solutions. Corros. Sci. 52, 2950 (2010).
32. Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous metal. Scr. Mater. 40, 1057 (1999).
33. Morrison, M.L., Buchanan, R., Liaw, P., Green, B.A., Wang, G., Liu, C., and Horton, J.A.: Corrosion–fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass. Mater. Sci. Eng., A 467, 198 (2007).
34. Gebert, A., Gostin, P.F., and Schultz, L.: Effect of surface finishing of a Zr-based bulk metallic glass on its corrosion behaviour. Corros. Sci. 52, 1711 (2010).
35. ASTM: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (ASTM International, West Conshohocken, PA 2000).
36. Frankel, G.S., Scully, J.R., and Jahnes, C.: Repassivation of pits in aluminum thin films. J. Electrochem. Soc. 143, 1834 (1996).
37. Vishwanadh, B., Abraham, G.J., Neogy, J.S., Dutta, R.S., and Dey, G.K.: Effect of structural defects, surface irregularities, and quenched-in defects on corrosion of Zr-based metallic glasses. Metall. Mater. Trans. A 40A, 1131 (2009).
38. Kim, Y.H. and Frankel, G.S.: Effect of noble element alloying on passivity and passivity breakdown of Ni. J. Electrochem. Soc. 154, C36 (2007).
39. Frankel, G.S.: Pitting corrosion of metals. A review of the critical factors. J. Electrochem. Soc. 145, 2186 (1998).
40. Paillier, J., Mickel, C., Gostin, P.F., and Gebert, A.: Characterization of corrosion phenomena of Zr–Ti–Cu–Al–Ni metallic glass by SEM and TEM. Mater. Charact. 61, 1000 (2010).
41. Bala, H. and Szymura, S.: Acid corrosion of amorphous and crystalline Cu-Zr alloys. Appl. Surf. Sci. 35, 41 (1988).
42. Kawashima, A., Ohmura, K., Yokoyama, Y., and Inoue, A.: The corrosion behaviour of Zr-based bulk metallic glasses in 0.5M NaCl solution. Corros. Sci. 53, 2778 (2011).
43. Green, B.A.: Localized corrosion behaviour of Zr-based bulk metallic glasses in neutral NaCl electrolytes. Doctoral Dissertation, The University of Tennessee, Knoxville, TN, 2008.
44. Köster, U. and Triwikantoro, : Oxidation of amorphous and nanocrystalline Zr-Cu-Ni-Al alloys. Mater. Sci. Forum 360362, 29 (2001).
45. Strehblow, H-H.: In Corrosion Mechanisms in Theory and Practice, Marcus, P. ed.; Marcel Dekker, Inc.: New York, Basel, 2002; pp. 243285.
46. Laycock, N.J. and Newman, R.C.: Localised dissolution kinetics, salt films and pitting potentials. Corros. Sci. 39, 1771 (1997).
47. Sato, N.: The stability of localized corrosion. Corros. Sci. 37, 1947 (1995).
48. Tauseef, A., Tariq, N.H., Akhter, J.I., Hasan, B.A., and Mehmood, M.: Corrosion behavior of Zr–Cu–Ni–Al bulk metallic glasses in chloride medium. J. Alloys Compd. 489, 596 (2010).
49. Gebert, A., Gostin, F., Kühn, U., and Schultz, L.: Corrosion of a Zr-based bulk metallic glass with different surface finishing states. ECS Trans. 16, 1 (2009).
50. Thompson, W.T., Kaye, M.H., Bale, C.W., and Pelton, A.D.: In Uhlig’s Corrosion Handbook, Revie, R.W. ed. (John Wiley & Sons, Inc., New York, NY, 2000); pp. 125136.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed