Skip to main content Accessibility help

Comparison of mechanical behaviors of enamel rod and interrod regions in enamel

  • Siang Fung Ang (a1), Mahnaz Saadatmand (a1), Michael V. Swain (a2), Arndt Klocke (a3) and Gerold A. Schneider (a4)...

Interrod regions exist between the enamel rods and are known to have different crystallite orientations and a higher organic content compared to the enamel rods (the intrarod regions). This study aims to characterize the mechanical properties of both regions especially the time-dependent properties by using spherical indentation. Despite the very small amount of proteins, the interrod region shows statistically significantly higher inelastic energy dissipation than the intrarod region with increased deformation times. The total displacement under constant load (creep), viscosity, and stress relaxation behavior of both regions are also reported. Similar to the observation of previous studies, the elastic modulus and hardness in the intrarod region are significantly higher than in the interrod region.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Healy, K.E.: Dentin and enamel, in Handbook of Biomaterials Properties, edited by Black, J. and Hastings, G. (Chapman & Hall, London, 1995), p. 25.
2.Frazier, P.D.: Adult human enamel: An electron microscopic study of crystallite size and morphology. J. Ultrastruct. Res. 22, 1 (1968).
3.Daculsi, G. and Kerebel, B.: High-resolution electron microscope study of human enamel crystallites: Size, shape, and growth. J. Ultrastruct. Res. 65, 163 (1978).
4.Gray, H., Bannister, L.H., Berry, M.M., and Williams, P.L.: Gray’s Anatomy: The Anatomical Basis of Medicine & Surgery, 38th ed. (Churchill Livingstone, New York, 1995), p. 1710.
5.Nanci, A.: Ten Cate’s Oral Histology: Development, Structure, and Function (Mosby, St Louis, 2003).
6.Bajaj, D. and Arola, D.D.: On the R-curve behavior of human tooth enamel. Biomaterials 30, 4037 (2009).
7.Glimcher, M.J., Daniel, E.J., Travis, D.F., and Kamhi, S.: Electron optical and x-ray diffraction studies of the organization of the inorganic crystals in embryonic bovine enamel. J. Ultrastruct. Res. 50, 1 (1965).
8.Maas, M.C. and Dumont, E.R.: Built to last: The structure, function and evolution of primate dental enamel. Evol. Anthropol. 8, 133 (1999).
9.Carlisle, C.R., Coulais, C., and Guthold, M.: The mechanical stress-strain properties of single electrospun collagen type I nanofibers. Acta Biomater. 6, 2997 (2010).
10.Habelitz, S., Marshall, S.J., Marshall, G.W. Jr., and Balooch, M.: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2001).
11.Ge, J., Cui, F.Z., Wang, X.M., and Feng, H.L.: Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26, 3333 (2005).
12.Oyen, M. and Cook, R.F.: A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2(4), 396 (2009).
13.Mencik, J., He, L.H., and Swain, M.V.: Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation. J. Mech. Behav. Biomed. Mater. 2, 318 (2009).
14.Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20(8), 2094 (2005).
15.Oyen, M.L. and Cook, R.F.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(1), 139 (2003).
16.Olesiak, S.E., Oyen, M.L., and Ferguson, V.L.: Viscous-elastic-plastic behavior of bone using Berkovich nanoindentation. Mech. Time-Depend. Mater. 14, 111 (2010).
17.Hertz, H.R.: Miscellaneous Papers (Macmillan, London, 1896).
18.Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).
19.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
20.He, L.H. and Swain, M.V.: Energy absorption characterization of human enamel using nanoindentation. J. Biomat. Mater. Res. 81, 484 (2007).
21.Lee, E.H. and Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).
22.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1985).
23.Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).
24.Sakai, M. and Shimizu, S.: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).
25.He, L.H. and Swain, M.V.: Nanoindentation creep behavior of human enamel. J. Mech. Behav. Biomed. Mater. 91, 352 (2009).
26.Williams, G. and Watts, D.C.: Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970).
27.Dorrington, K.L.: The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol. 34, 289 (1980).
28.Ang, S.F., Bortel, E.L., Swain, M.V., Klocke, A., and Schneider, G.A.: Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales. Biomaterials 31, 1955 (2010).
29.Habelitz, S., Marshall, G.W., Balooch, M., and Marshall, S.J.: Nanoindentation and storage of teeth. J. Biomech. 35(7), 995 (2002).
30.Viswanath, B., Raghavan, R., Ramamurty, U., and Ravishankar, N.: Mechanical properties and anisotropy in hydroxyapatite single crystals. Scr. Mater. 57, 361 (2007).
31.Dougan, L., Koti, A.S., Genchev, G., Lu, H., and Fernandez, J.M.: A single-molecule perspective on the role of solvent hydrogen bonds in protein folding and chemical reactions. ChemPhysChem. 9, 2836 (2008).
32.Zhang, J., Michalenko, M.M., Kuhl, E., and Ovaert, T.C.: Characterization of indentation response and stiffness reduction of bone using a continuum damage model. J. Mech. Behav. Biomed. Mater. 3, 189 (2010).
33.He, L.H. and Swain, M.V.: Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28, 4512 (2007).
34.Schneider, G.A., He, L.H., and Swain, M.V.: Viscous flow model of creep in enamel. J. Appl. Phys. 103, 014701 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed