Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T14:13:29.048Z Has data issue: false hasContentIssue false

Composition and structure of Si–Ge layers produced by ion implantation and laser melting

Published online by Cambridge University Press:  31 January 2011

M. Berti
Affiliation:
Dipartimento di Fisica dell'Università-CISM, Via Marzolo 8, 35131 Padova, Italy
G. Mazzi
Affiliation:
Dipartimento di Fisica dell'Università-CISM, Via Marzolo 8, 35131 Padova, Italy
L. Calcagnile
Affiliation:
Dipartimento di Scienza dei materiali-INFM, Via Arnesano, 72100 Lecce, Italy
A.V. Drigo
Affiliation:
Dipartimento di Scienza dei materiali-INFM, Via Arnesano, 72100 Lecce, Italy
P.G. Merli
Affiliation:
Istituto La. M. El-CNR Via Castagnoli 1, 40126 Bologna, Italy
A. Migliori
Affiliation:
Istituto La. M. El-CNR Via Castagnoli 1, 40126 Bologna, Italy
Get access

Abstract

Si samples (001) oriented have been implanted with 101774Ge/cm2 (17.7 at. % maximum Ge concentration) and then pulse annealed with either ruby or excimer (XeCl) lasers in the energy density range from 0.1 to 1.5 J/cm2. Compositional and structural characterization has been performed showing that for both laser wavelengths the final product of the annealing process is a single crystal characterized by a surface layer about 150 nm thick whose composition is Si0.9Ge0.1. While after ruby laser irradiations defects are present even in the fully recrystallized samples, after XeCl irradiations good strained layers in epitaxy to the underlying silicon crystals and free from misfit dislocations are produced. Structural characterization of the regrown films indicates that the governing factor for the recovery of the crystalline quality and for the “building up of strain” is the state of the implantation “end-of-range defect” layer. When this defected layer is not melted, textured columnar grains are formed. Upon melting of the end-of-range defect layer, a single crystal epitaxial layer under compressive strain is formed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Willander, M. W., Shen, G-D., Xu, D. X., and Ni, W. X., J. Appl. Phys. 63 (10), 5035 (1988).CrossRefGoogle Scholar
2.Iyer, S. S., Patton, G. L., Delage, S. L., Tiwari, S., and Stork, J. M. C., Proc. 2nd Int. Symp. on Si MBE, edited by Bean, J. C. and Schowalter, L. J. (Electrochemical Society, Pennington, NJ, 1988), Proc. Vol. 88–8, p. 114.Google Scholar
3.Abelson, J. R., Sigmon, T. W., Kim, K. B., and Weiner, K. H., Appl. Phys. Lett. 52 (3), 230 (1988).CrossRefGoogle Scholar
4.Yu, A. J., Mayer, J. W., Eaglesham, D. J., and Poate, J. M., Appl. Phys. Lett. 54 (23), 2342 (1989).CrossRefGoogle Scholar
5.Paine, D. C., Howard, D. J., Stoffel, N. G., and Horton, J. A., J. Mater. Res. 5, 1023 (1990).CrossRefGoogle Scholar
6.Berti, M., Mazzi, G., Drigo, A. V., Migliori, A., Jannitti, E., and Nicoletti, S., Appl. Surf. Sci. 43, 158 (1989).CrossRefGoogle Scholar
7.Camera, A. and Drigo, A. V., Nucl. Instrum. Methods in Phys. Res. B 44, 357 (1990).Google Scholar
8.Bourret, A., Inst. Phys. Conf. Ser. 87, Section 1, p. 39 (1987) and references therein.Google Scholar
9.Kohama, Y., Fukuda, Y., and Seki, M., Appl. Phys. Lett. 52, 380 (1988).CrossRefGoogle Scholar