Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T12:49:34.369Z Has data issue: false hasContentIssue false

Composition tunable memory and threshold switching in Al20AsxTe80−x semiconducting glasses

Published online by Cambridge University Press:  31 January 2011

S. Murugavel
Affiliation:
Department of Instrumentation, Indian Institute of Science, Bangalore 560 012, India
S. Asokan*
Affiliation:
Department of Instrumentation, Indian Institute of Science, Bangalore 560 012, India
*
a) Address correspondence to this author. e-mail: sasokan@isu.iisc.ernet.in
Get access

Abstract

I-V studies indicate a composition dependent switching behavior (Memory or Threshold) in bulk Al20AsxTe80−x glasses, which is determined by the coordination and composition of aluminum. Investigations on temperature and thickness dependence of switching and structural studies on switched samples suggest thermal and electronic mechanisms of switching for the memory and threshold samples, respectively. The present results also show that these samples have a wider composition range of threshold behavior with lower threshold voltages compared to other threshold samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dewald, J. F., Pearson, A. D., Northover, W. R., and Peck, W. F., J. Electron. Chem. Soc. 109, 243c (1962).Google Scholar
2.Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
3.Ovshinsky, S. R. and Sapru, K., Proceedings of Seventh International Conference on Amorphous and Liquid Semiconductors edited by Spear, W. E. (1977), p. 447.Google Scholar
4.Adler, D., Shur, M. S., Silver, M., and Ovshinksy, S. R., J. Appl. Phys. 51, 3289 (1980).CrossRefGoogle Scholar
5.Babenskas, E., Balyavichyus, S., Poshkus, A., and Shiktorov, N., J. Non-Cryst. Solids 90, 601 (1987).CrossRefGoogle Scholar
6.Balyavichyus, S., Deksins, A., Poshkus, A., and Shiktorov, N., Sov. Phys. Semicond. 18, 947 (1984).Google Scholar
7.Titus, S. S. K., Chatterjee, R., Asokan, S., and Kumar, A., Phys. Rev. B 48, 14 650 (1993).CrossRefGoogle Scholar
8.Prakash, S., Asokan, S., and Ghare, D. B., Semicond. Sci. Technol. 9, 1484 (1994).CrossRefGoogle Scholar
9.Chatterjee, R., Asokan, S., and Titus, S. S. K., J. Phys. D: Appl. Phys. 27, 2624 (1994).CrossRefGoogle Scholar
10.Uttecht, R., Stevenson, H., Sie, C. H., Griener, J. D., and Raghavan, K. S., J. Non-Cryst. Solids 2, 358 (1970).CrossRefGoogle Scholar
11.Tanaka, K., Okada, Y., Sugi, M., Iizima, S., and Kikuchi, M., J. Non-Cryst. Solids 12, 100 (1973).CrossRefGoogle Scholar
12.Borisova, Z. U., in Glassy Semiconductors (Plenum, New York, 1981), p. 419.CrossRefGoogle Scholar
13.Chatterjee, R., Acharya, K. V., Asokan, S., and Titus, S. S. K., Rev. Sci. Instrum. 65, 2382 (1994).CrossRefGoogle Scholar
14.Narayana, R. Aravinda, Asokan, S., and Kumar, A., Phys. Rev. B 54, 4413 (1996).CrossRefGoogle Scholar
15.Murugavel, S. and Asokan, S., unpublished.Google Scholar
16.Cornet, J. and Rossier, D., J. Non-Cryst. Solids 12, 85 (1973).CrossRefGoogle Scholar
17.Tanaka, K., Iizima, S., Sugi, M., and Kikuchi, M., Solid State Commun. 8, 75 (1970).CrossRefGoogle Scholar
18.Alegria, A., Arruabarrena, A., and Sanz, F., J. Non-Cryst. Solids 58, 17 (1983).CrossRefGoogle Scholar
19.Ovshinsky, S. R. and Fritzshe, H.,IEEE Trans. Electron Devices ED20, 91 (1973).CrossRefGoogle Scholar
20.Warren, A. C., IEEE Trans. Electron Devices ED20, 123 (1973).CrossRefGoogle Scholar
21.Adler, D., Henisch, H. K., and Mott, N. F., Rev. Mod. Phys. 50, 209 (1978).CrossRefGoogle Scholar
22.Kolobov, A. V., Kondo, M., Durny, R., Matsuda, A., and Tanaka, K.Phys. Rev. B 56, 485 (1997).CrossRefGoogle Scholar
23.O'Dwyer, J. J., The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Calarendon Press, Oxford, 1973), p. 181.Google Scholar
24.Bosnell, J. R. and Thomas, C. B., Solid State Electron. 15, 1261 (1972).CrossRefGoogle Scholar
25.Pinto, R., Thin Solid Films 7, 391 (1971).CrossRefGoogle Scholar
26.Giridhar, A. and Rao, K. J., J. Non-Cryst. Solids 33, 177 (1979).CrossRefGoogle Scholar
27.Johnes, G. and Collins, R. A., Phys. Status Solidi A 53, 339 (1979).CrossRefGoogle Scholar
28.Stocker, H. J., Barlow, C. A., and Weirauch, D. F., J. Non-Cryst. Solids 4, 523 (1970).CrossRefGoogle Scholar
29.Babenskas, E., Balevicius, S., Cesnys, A., Poskus, A., and Siktorov, N., J. Non-Cryst. Solids 90, 601 (1987).CrossRefGoogle Scholar
30.Whitehead, S., Dielectric Breakdown of Solids (Clarendon Press, Oxford, 1951), p. 5.Google Scholar
31.Lucas, I., J. Non-Cryst. Solids 6, 136 (1971).CrossRefGoogle Scholar
32.Henisch, H. K., Fagen, A. E., and Ovshinsky, S. R., J. Non-Cryst. Solids 4, 538 (1970).CrossRefGoogle Scholar
33.Owen, A. E. and Robertson, J. M., IEEE Trans. Electron Devices ED20, 105 (1973).CrossRefGoogle Scholar
34.Kolomiets, V. T., Lebedev, E. A., and Taksami, I. A., Sov. Phys. Semicon. 3, 621 (1969).Google Scholar
35.Kolomiets, B. T., Lebedev, E. A., and Taksami, I. A., Sov. Phys. Semicon. 3, 267 (1969).Google Scholar
36.Weirauch, D. F., Appl. Phys. Lett. 16, 72 (1970).CrossRefGoogle Scholar
37.Kroll, D. M., Phys. Rev. B 9, 1669 (1974).CrossRefGoogle Scholar
38.Colmenero, J. and Barandiaran, J. M., Phys. Status Solidi A 62, 323 (1980).CrossRefGoogle Scholar