Skip to main content Accesibility Help
×
×
Home

Compositionally graded metals: A new frontier of additive manufacturing

  • Douglas C. Hofmann (a1), Joanna Kolodziejska (a2), Scott Roberts (a3), Richard Otis (a4), Robert Peter Dillon (a5), Jong-Ook Suh (a5), Zi-Kui Liu (a6) and John-Paul Borgonia (a7)...
Abstract

The current work provides an overview of the state-of-the-art in polymer and metal additive manufacturing and provides a progress report on the science and technology behind gradient metal alloys produced through laser deposition. The research discusses a road map for creating gradient metals using additive manufacturing, demonstrates basic science results obtainable through the methodology, shows examples of prototype gradient hardware, and suggests that Compositionally Graded Metals is an emerging field of metallurgy research.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: dch@jpl.nasa.gov
References
Hide All
1. Hopkinson, N., Hague, R., and Dickens, P.: Rapid Manufacturing: An Industrial Revolution for a Digital Age (Wiley-Blackwell, Berlin, Germany, 2005).
2. Campbell, R.I., Hague, R.J.M., Sener, B., and Wormald, P.W.: The potential for the bespoke industrial designer. Des. J. 6, 2434 (2003).
3. Hague, R.J.M., Campbell, R.I., and Dickens, P.M.: Implications on design of rapid manufacturing. Proc. Inst. Mech. Eng., Part C 217, 2530 (2003).
4. Gibson, I., Rosen, D.W., and Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (Springer, New York, 2010).
5. Santos, E.C., Shiomi, M., Osakada, K., and Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 14591468 (2006).
6. Griffith, M.L., Ensz, M.T., Puskar, J.D., Robino, C.V., Brooks, J.A., Philliber, J.A., Smugeresky, J.E., and Hofmeister, W.H.: Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Proc. 625, 9 (2011).
7. Crespo, A. and Vilar, R.: Finite element analysis of the rapid manufacturing of Ti–6Al–4V parts by laser powder deposition. Scr. Mater. 63, 140143 (2010).
8. Kelly, S. and Kampe, S.: Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metall. Mater. Trans. 35, 18611867 (2004).
9. Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., and Wicker, R.B.: Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 2032 (2009).
10. Tan, H., Zhang, F., Chen, J., Lin, X., and Huang, W.: Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders. Chin. Opt. Lett. 9, 051403051406 (2011).
11. Schwendner, K.I., Banerjee, R., Collins, P.C., Brice, C.A., and Fraser, H.L.: Direct laser deposition of alloys from elemental powder blends. Scr. Mater. 45, 11231129 (2001).
12. Xue, L. and Islam, M.U.: Free-form laser consolidation for producing metallurgically sound and functional components. J. Laser Appl. 12, 160 (2000).
13. Banerjee, R., Collins, P.C., Bhattacharyya, D., Banerjee, S., and Fraser, H.L.: Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys. Acta Mater. 51, 32773292 (2003).
14. Collins, P.C., Banerjee, R., Banerjee, S., and Fraser, H.L.: Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys. Mater. Sci. Eng., A 352, 118128 (2003).
15. Bever, M.B. and Duwez, P.F.: Gradients in composite materials. Mater. Sci. Eng. 10, 18 (1972).
16. Shen, M. and Bever, M.B.: Gradients in polymeric materials. J. Mater. Sci. 7, 741746 (1972).
17. Taminger, K.M.B. and Hafley, R.A.: Electron beam freeform fabrication: A rapid metal deposition process. In Proc. of the 3rd Ann. Auto. Comp. Conf., 2003; pp. 16.
18. Watson, J.K., Taminger, K.M.B., Hafley, R.A., and Petersen, D.D.: Development of a prototype electron beam freeform fabrication system. In Proc. of 13th SFF Symp., 2002; pp. 458465.
19. Brice, C.A. and Henn, D.S.: Rapid prototyping and freeform fabrication via electron beam welding deposition. Proceeding of International Institute of Welding Conference, Copenhagen, Denmark (2002).
20. Hofmann, D.C., Suh, J-Y., Wiest, A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 451 (2008), 10851089.
21. Hofmann, D.C., Suh, J-Y., Wiest, A., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U. S. A. 105, 2013620140 (2008).
22. Liu, Z-K.: First-principles calculations, and CALPHAD modeling of thermodynamics. J. Phase Equilib. Diffus. 30, 517534 (2009).
23. Andersson, J-O., Helander, T., Höglund, L., Shi, P., and Sundman, B.: Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD 26, 273312 (2002).
24. Kaufman, L. and Bernstein, H.: Computer Calculation of Phase Diagrams with Special Reference to Refractory Metal (Academic Press, New York, NY, 1970).
25. See for example, http://www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.html#.U5IRMU1OVaQ, NASA Test Limits of 3-D Printing with Powerful Rocket Engine Check, 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed