Skip to main content Accessibility help

Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams

  • Gonzalo Alejandro Rocha Rivero (a1), Benjamin Franklin Schultz (a1), J.B. Ferguson (a1), Nikhil Gupta (a2) and Pradeep Kumar Rohatgi (a3)...

Metal matrix syntactic foams are promising materials with high energy absorption capability. To study the effects of matrix strength on the quasistatic compressive properties of syntactic foams using SiC hollow particles as reinforcement, matrices of Al-A206 and Mg-AZ91 were used. Because Al-A206 is a heat-treatable alloy, matrix strength can be varied by heat treatment conditions, and foams in as-cast, T4, and T7 conditions were tested in this study. It is shown that the peak strength, plateau strength, and toughness of the foams increase with increasing yield strength of the matrix and that these foams show better performance than other foams on a specific property basis. High strain rate testing of the Mg-AZ91/SiC syntactic foams showed that there was little strain rate dependence of the peak stress under strain rates ranging from 10−3/s to 726/s.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Evans, A.G., Hutchinson, J.W., and Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171 (1999).
2.Ashby, M.F., Evans, A.G., and Hutchinson, J.W.: Cellular Metals, A Design Guide (Cambridge University, Cambridge, England, 1998).
3.Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).
4.Balch, D.K., O'Dwyer, J.G., Davis, G.R., Cady, C.M., Gray, G.T. III, and Dunand, D.C.: Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng., A. 391, 408 (2005).
5.Balch, D.K. and Dunand, D.C.: Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater. 54, 1501 (2006).
6.Wu, G.H., Dou, Z.Y., Sun, D.L., Jiang, L.T., Ding, B.S., and He, B.F.: Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr. Mater. 56, 221 (2007).
7.Zhang, Q., Lee, P.D., Singh, R., Wu, G., and Lindley, T.C.: Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Mater. 57, 3003 (2009).
8.Tao, X.F., Zhang, L.P., and Zhao, Y.Y.: Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Mater. Des. 30, 2732 (2009).
9.Tao, X.F. and Zhao, Y.Y.: Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 61, 461 (2009).
10.Zhao, Y., Tao, X., and Xue, X.: Manufacture and mechanical properties of metal matrix syntactic foams. In Proceedings of MS&T 2008 Processing, Properties and Performance of Composite Materials, The Printing House Inc.: Stoughton, WI, 2008; p. 2607.
11.Orbulov, I.N. and Dobránszky, J.: Producing metal matrix syntactic foams by pressure infiltration. Period. Polytech. Mech. Eng. 52, 35 (2008).
12.Orbulov, I.N. and Ginsztler, J.: Compressive characteristics of metal matrix syntactic foams. Composites Part A 43, 553 (2012).
13.Palmer, R.A., Gao, K., Doan, T.M., Green, L., and Cavallaro, G.: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A. 464, 85 (2007).
14.Dou, Z.Y., Jiang, L.T., Wu, G.H., Zhang, Q., Xiu, Z.Y., and Chen, G.Q.: High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater. 57, 945 (2007).
15.Rohatgi, P.K., Kim, J.K., Gupta, N., Alaraj, S., and Daoud, A.: Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A 37, 430 (2006).
16.Zhang, L.P. and Zhao, Y.Y.: Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J. Compos. Mater. 41, 2105 (2007).
17.Kiser, M., He, M.Y., and Zok, F.W.: The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 47, 2685 (1999).
18.Drury, W.J., Rickles, S.A., Sanders, T.H. Jr, and Cochran, J.K.: Deformation energy absorption characteristics of a metal/ceramic cellular solid, in Light-Weight Alloys for Aerospace Applications, edited by Loe, E.W., Chia, E.H., and Kim, N.J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1989), p. 311.
19.Luong, D.D., Strbik, O.M. III, Hammond, V.H., Gupta, N., and Cho, K.: Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization of quasi-static and high strain rates. J. Alloys Compd. 550, 412 (2013).
20.Weise, J., Zanetti-Bueckmann, V., Yezerska, O., Schneider, M., and Haesche, M.: Processing, properties and coating of micro-porous syntactic foams. Adv. Eng. Mater. 9, 52 (2007).
21.Hartmann, M., Reindel, K., and Singer, R.F.: Fabrication and properties of syntactic magnesium foams, in Porous and Cellular Materials for Structural Applications, edited by Schwartz, D.S., Shih, D.S., Wadley, H.N.G., and Evans, A.G. (Mater. Res. Soc. Symp. Proc. 521, Warrendale, PA, 1998) p. 211.
22.DeFouw, J.D. and Rohatgi, P.K.: Low density magnesium matrix syntactic foams. In TMS2011 140th Annual Meeting & Exhibition Supplemental Proceedings Materials Fabrication, Properties, Characterization and Modeling, Vol. 2 (John Wiley & Sons, Inc., Hoboken, NJ, 2011), p. 797.
23.Daoud, A., Abou El-khair, M.T., Abdel-Aziz, M., and Rohatgi, P.: Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Compos. Sci. Technol. 67, 1842 (2007).
24.Daoud, A.: Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng., A. 488, 281 (2008).
25.Mondal, D.P., Majumder, J.D., Jha, N., Badkul, A., Das, S., Patel, A., and Gupta, G.: Titanium-cenosphere syntactic foam made through powder metallurgy route. Mater. Des. 34, 82 (2012).
26.Vendra, L.J., and Rabiei, A.: A study on aluminum-steel composite metal foam processed by casting. Mater. Sci. Eng., A. 465, 59 (2007).
27.Rabiei, A. and Vendra, L.J.: A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett. 63, 533 (2009).
28.Neville, B.P. and Rabiei, A.: Composite metal foams processed through powder metallurgy. Mater. Des. 29, 388 (2008).
29.Castro, G. and Nutt, S.R.: Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng., A. 535, 274 (2012).
30.Peroni, L., Scapin, M., Avalle, M., Weise, J., and Lehmhus, D.: Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng., A. 552, 364 (2012).
31.Mortensen, A. and Jin, I.: Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 (1992).
32.Chandler, H., editor. Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (ASM International, Materials Park, OH, 1996), pp. 135145.
33.San Marchi, C., Cao, F., Kouzeli, M., and Mortensen, A.: Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater. Sci. Eng., A 337, 202 (2002).
34.Ishikawa, K., Watanabe, H., and Mukai, T.: High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).
35.Mukai, T., Kanahashi, H., Yamada, Y., Shimojima, K., Mabuchi, M., Nieh, T.G., and Higashi, K.: Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scr. Mater. 41, 365 (1999).
36.Gupta, N., Luong, D.D., and Rohatgi, P.K.: A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy. J. Appl. Phys. 109, 103512 (2011).
37.Talamantes-Silva, M., Rodríguez, A., Talamantes-Silva, J., Valtierra, S., and Colás, R.: Effect of solidification rate and heat treating on the microstructure and tensile behavior of an aluminum-copper alloy. Metall. Mater. Trans. B 39, 911 (2008).
38.Bäckerud, L., Chai, G., and Tamminen, J.: Solidification Characteristics of Aluminum Alloys volume 2 Foundry Alloys (AFS/Skanaluminium, des Plaines, IL, 1990), pp. 6369.
39.Srinivasa, A., Swaminathan, J., Gunjan, M.K., Pillai, U.T.S., and Pai, B.C.: Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Mater. Sci. Eng., A 527, 1395 (2010).
40.Braszczyńska-Malik, K.N. and Zyska, A.: Influence of solidification rate on microstructure of gravity cast AZ91 magnesium alloy. Arch. Foundry Eng. 10, 23 (2010).
41.Ureña, A., Gómez de Salazar, J.M., Gil, L., Escalera, M.D., and Baldonedo, J.L.: Scanning and transmission electron microscopy study of the microstructural changes occuring in aluminum matrix composites reinforced with SiC particles during casting and welding: interface reactions. J. Microsc. 196, 124 (1999).
42.Luo, A.: Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall. Mater. Trans. A. 26, 2445 (1995).
43.Kaufman, J.G. and Rooy, E.L.: Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, OH, 2004), p. 8182.
44.Kaufman, J.G.: Magnesium Alloy Database (Knovel, Norwich, NY, 2011). Table 2b, Online version available at:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed