Skip to main content

Compressive response of vertically aligned carbon nanotube films gleaned from in situ flat-punch indentations

  • Siddhartha Pathak (a1), Nisha Mohan (a1), Parisa Pour Shahid Saeed Abadi (a2), Samuel Graham (a3), Baratunde A. Cola (a3) and Julia R. Greer (a4)...

We report the mechanical behavior of vertically aligned carbon nanotube films, grown on Si substrates using atmospheric pressure chemical vapor deposition, subjected to in situ large displacement (up to 70 μm) flat-punch indentations. We observed three distinct regimes in their indentation stress–strain curves: (i) a short elastic regime, followed by (ii) a sudden instability, which resulted in a substantial rapid displacement burst manifested by an instantaneous vertical shearing of the material directly underneath the indenter tip by as much as 30 μm, and (iii) a positively sloped plateau for displacements between 10 and 70 μm. In situ nanomechanical indentation experiments revealed that the shear strain was accommodated by an array of coiled carbon nanotube “microrollers,” providing a low-friction path for the vertical displacement. Mechanical response and concurrent deformation morphologies are discussed in the foam-like deformation framework with a particular emphasis on boundary conditions.

Corresponding author
a)Address all correspondence to this author. e-mail:,
Hide All
1.McCarter, C.M., Richards, R.F., Mesarovic, S.D., Richards, C.D., Bahr, D.F., McClain, D., and Jiao, J.: Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J. Mater. Sci. 41, 7872 (2006).
2.Zbib, A.A., Mesarovic, S.D., Lilleodden, E.T., McClain, D., Jiao, J., and Bahr, D.F.: The coordinated buckling of carbon nanotube turfs under uniform compression. Nanotechnology 19, 175704 (2008).
3.Cola, B.A., Xu, J., and Fisher, T.S.: Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer 52, 3490 (2009).
4.Misra, A., Greer, J.R., and Daraio, C.: Strain rate effects in the mechanical response of polymer-anchored carbon nanotube foams. Adv. Mater. 20, 1 (2008).
5.Cao, A.Y., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., and Ajayan, P.M.: Super-compressible foamlike carbon nanotube films. Science 310, 1307 (2005).
6.Cho, J., Richards, C., Bahr, D., Jiao, J., and Richards, R.: Evaluation of contacts for a MEMS thermal switch. J. Micromech. Microeng. 18(105012), 16 (2008).
7.Waters, J.F., Guduru, P.R., Jouzi, M., Xu, J.M., Hanlon, T., and Suresh, S.: Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl. Phys. Lett. 87, 103109 (2005).
8.Pathak, S., Cambaz, Z.G., Kalidindi, S.R., Swadener, J.G., and Gogotsi, Y.: Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47, 1969 (2009).
9.Pathak, S., Lim, E.J., Pour Shahid Saeed Abadi, P., Graham, S., Cola, B.A., and Greer, J.R.: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: An in situ study. ACS Nano 6(3), 21892197 (2012).
10.Kumar, M. and Ando, Y.: Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739 (2010).
11.Hutchens, S.B., Hall, L.J., and Greer, J.R.: In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv. Funct. Mater. 20, 2338 (2010).
12.Hutchens, S.B., Needleman, A., and Greer, J.R.: Analysis of uniaxial compression of vertically aligned carbon nanotubes. J. Mech. Phys. Solids 59, 2227 (2011).
13.Suhr, J., Victor, P., Sreekala, L.C.S., Zhang, X., Nalamasu, O., and Ajayan, P.M.: Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2, 417 (2007).
14.Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A.: Height independent compressive modulus of vertically aligned carbon nanotube arrays. Nano Lett. 8, 511 (2008).
15.Mesarovic, S.D., McCarter, C.M., Bahr, D.F., Radhakrishnan, H., Richards, R.F., Richards, C.D., McClain, D., and Jiao, J.: Mechanical behavior of a carbon nanotube turf. Scr. Mater. 56, 157 (2007).
16.Qiu, A., Bahr, D.F., Zbib, A.A., Bellou, A., Mesarovic, S.D., McClain, D., Hudson, W., Jiao, J., Kiener, D., and Cordill, M.J.: Local and non-local behavior and coordinated buckling of CNT turfs. Carbon 49, 1430 (2011).
17.Zhang, Q., Lu, Y.C., Du, F., Dai, L., Baur, J., and Foster, D.C.: Viscoelastic creep of vertically aligned carbon nanotubes. J. Phys. D: Appl. Phys. 43, 315401 (2010).
18.Deck, C.P., Flowers, J., McKee, G.S.B., and Vecchio, K.: Mechanical behavior of ultralong multiwalled carbon nanotube mats. J. Appl. Phys. 101, 23512 (2007).
19.Xu, M., Futaba, D.N., Yamada, T., Yumura, M., and Hata, K.: Carbon nanotubes with temperature-invariant viscoelasticity from-196 degrees to 1000 degrees C. Science 330, 1364 (2010).
20.Xu, M., Futaba, D.N., Yumura, M., and Hata, K.: Carbon nanotubes with temperature-invariant creep and creep-recovery from −190 to 970 °C. Adv. Mater. 23, 3686 (2011).
21.Cao, C., Reiner, A., Chung, C., Chang, S-H., Kao, I., Kukta, R.V., and Korach, C.S.: Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49, 3190 (2011).
22.Maschmann, M.R., Qiuhong, Z., Feng, D., Liming, D., and Baur, J.: Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon 49, 386 (2011).
23.Pour Shahid Saeed Abadi, P., Hutchens, S., Taphouse, J.H., Greer, J.R., Cola, B.A., and Graham, S.: The effect of morphology on the micro-compression response of carbon nanotube forests. Nanoscale 4(11), 33733380 (2012).
24.Maschmann, M.R., Zhang, Q., Wheeler, R., Du, F., Dai, L., and Baur, J.: In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648 (2011).
25.Bradford, P.D., Wang, X., Zhao, H., and Zhu, Y.T.: Tuning the compressive mechanical properties of carbon nanotube foam. Carbon 49, 2834 (2011).
26.Kim, J-Y. and Greer, J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).
27.Tu, J.P., Jiang, C.X., Guo, S.Y., and Fu, M.F.: Micro-friction characteristics of aligned carbon nanotube film on an anodic aluminum oxide template. Mater. Lett. 58, 1646 (2004).
28.Tu, J.P., Zhu, L.P., Hou, K., and Guo, S.Y.: Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41, 1257 (2003).
29.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1987).
30.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
31.Deshpande, V.S. and Fleck, N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253 (2000).
32.Ashby, M.F.: Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Oxford, 2005).
33.Hill, R.: The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950).
34.Herbert, E.G., Oliver, W.C., and Pharr, G.M.: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 074021 (2008).
35.Herbert, E.G., Oliver, W.C., Lumsdaine, A., and Pharr, G.M.: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626 (2009).
36.Wright, W.J., Maloney, A.R., and Nix, W.D.: An improved analysis for viscoelastic damping in dynamic nanoindentation. Int. J. Surf. Sci. Eng. 1, 274 (2007).
37.Wright, W.J. and Nix, W.D.: Storage and loss stiffnesses and moduli as determined by dynamic nanoindentation. J. Mater. Res. 24(3), 863 (2009).
38.Pathak, S., Gregory Swadener, J., Kalidindi, S.R., Courtland, H-W., Jepsen, K.J., and Goldman, H.M.: Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J. Mech. Behav. Biomed. Mater. 4, 34 (2011).
39.Fleck, N.A., Otoyo, H., and Needleman, A.: Indentation of porous solids. Int. J. Solids Struct. 29, 1613 (1992).
40.Sudheer Kumar, P., Ramchandra, S., and Ramamurty, U.: Effect of displacement-rate on the indentation behavior of an aluminum foam. Mater. Sci. Eng., A 347, 330 (2003).
41.Flores-Johnson, E.A. and Li, Q.M.: Indentation into polymeric foams. Int. J. Solids Struct. 47, 1987 (2010).
42.Pantano, A., Parks, D.M., and Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004).
43.Lakes, R.S.: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1998).
44.Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).
45.Ward, I.M. and Sweeney, J.: An Introduction to the Mechanical Properties of Solid Polymers, 2nd ed. (Wiley, West Sussex, UK, 2004).
46.Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1999).
47.Andrews, E.W., Gibson, L.J., and Ashby, M.F.: The creep of cellular solids. Acta Mater. 47, 2853 (1999).
48.Andrews, E.W., Gioux, G., Onck, P., and Gibson, L.J.: Size effects in ductile cellular solids. Part II: Experimental results. Int. J. Mech. Sci. 43, 701 (2001).
49.Pathak, S., Mohan, N., Decolvenaere, E., Needleman, A., Bedewy, M., Hart, A.J., and Greer, J.R.: Effect of density gradients on the deformation of carbon nanotube pillars: An in-situ study. (2012, submitted).
50.Gogotsi, Y.: High-temperature rubber made from carbon nanotubes. Science 330, 1332 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title

Pathak et al. supplementary movie
Supplementary movie

 Video (7.4 MB)
7.4 MB

Pathak et al. supplementary movie
Supplementary movie

 Video (6.9 MB)
6.9 MB


Full text views

Total number of HTML views: 7
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 520 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th March 2018. This data will be updated every 24 hours.