Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 18
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Desmoulins, A. and Kochmann, D.M. 2017. Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses. Computer Methods in Applied Mechanics and Engineering, Vol. 313, p. 85.

    Clough, Eric C. Ensberg, Jie Eckel, Zak C. Ro, Christopher J. and Schaedler, Tobias A. 2016. Mechanical performance of hollow tetrahedral truss cores. International Journal of Solids and Structures, Vol. 91, p. 115.

    Dalaq, Ahmed S. Abueidda, Diab W. Abu Al-Rub, Rashid K. and Jasiuk, Iwona M. 2016. Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. International Journal of Solids and Structures, Vol. 83, p. 169.

    Juarez, Theresa and Hodge, Andrea M. 2016. Synthesis of Nanoporous Gold Tubes. Advanced Engineering Materials, Vol. 18, Issue. 1, p. 65.

    Lee, Min Geun Lee, Jeong Woo Han, Seung Chul and Kang, Kiju 2016. Mechanical analyses of “Shellular”, an ultralow-density material. Acta Materialia, Vol. 103, p. 595.

    Messner, Mark C. 2016. Optimal lattice-structured materials. Journal of the Mechanics and Physics of Solids, Vol. 96, p. 162.

    Nguyen, Ban Dang Cho, Jeong Shik and Kang, Kiju 2016. Optimal design of “Shellular”, a micro-architectured material with ultralow density. Materials & Design, Vol. 95, p. 490.

    Pedrielli, Andrea Taioli, Simone Garberoglio, Giovanni and Pugno, Nicola 2016. Designing graphene based nanofoams with nonlinear auxetic and anisotropic mechanical properties under tension or compression. Carbon,

    Rashed, M.G. Ashraf, Mahmud Mines, R.A.W. and Hazell, Paul J. 2016. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, Vol. 95, p. 518.

    Valdevit, Lorenzo and Bauer, Jens 2016. Three-Dimensional Microfabrication Using Two-photon Polymerization.

    Zheng, Xiaoyu Smith, William Jackson, Julie Moran, Bryan Cui, Huachen Chen, Da Ye, Jianchao Fang, Nicholas Rodriguez, Nicholas Weisgraber, Todd and Spadaccini, Christopher M. 2016. Multiscale metallic metamaterials. Nature Materials, Vol. 15, Issue. 10, p. 1100.

    Asadpoure, Alireza and Valdevit, Lorenzo 2015. Topology optimization of lightweight periodic lattices under simultaneous compressive and shear stiffness constraints. International Journal of Solids and Structures, Vol. 60-61, p. 1.

    Meza, Lucas R. Zelhofer, Alex J. Clarke, Nigel Mateos, Arturo J. Kochmann, Dennis M. and Greer, Julia R. 2015. Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences, Vol. 112, Issue. 37, p. 11502.

    Meza, L. R. Das, S. and Greer, J. R. 2014. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, Vol. 345, Issue. 6202, p. 1322.

    Rys, Jan Valdevit, Lorenzo Schaedler, Tobias A. Jacobsen, Alan J. Carter, William B. and Greer, Julia R. 2014. Fabrication and Deformation of Metallic Glass Micro-Lattices. Advanced Engineering Materials, Vol. 16, Issue. 7, p. 889.

    Salari-Sharif, Ladan Schaedler, Tobias A. and Valdevit, Lorenzo 2014. Energy dissipation mechanisms in hollow metallic microlattices. Journal of Materials Research, Vol. 29, Issue. 16, p. 1755.

    Salari-Sharif, L. and Valdevit, L. 2014. Accurate Stiffness Measurement of Ultralight Hollow Metallic Microlattices by Laser Vibrometry. Experimental Mechanics, Vol. 54, Issue. 8, p. 1491.

    Schaedler, Tobias A. Ro, Christopher J. Sorensen, Adam E. Eckel, Zak Yang, Sophia S. Carter, William B. and Jacobsen, Alan J. 2014. Designing Metallic Microlattices for Energy Absorber Applications. Advanced Engineering Materials, Vol. 16, Issue. 3, p. 276.


Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design

  • Lorenzo Valdevit (a1), Scott W. Godfrey (a2), Tobias A. Schaedler (a3), Alan J. Jacobsen (a3) and William B. Carter (a3)
  • DOI:
  • Published online: 18 June 2013

Recent advances in multiscale manufacturing enable fabrication of hollow-truss based lattices with dimensional control spanning seven orders of magnitude in length scale (from ∼50 nm to ∼10 cm), thus enabling the exploitation of nano-scale strengthening mechanisms in a macroscale cellular material. This article develops mechanical models for the compressive strength of hollow microlattices and validates them with a selection of experimental measurements on nickel microlattices over a wide relative density range (0.01–10%). The limitations of beam-theory-based analytical approaches for ultralight designs are emphasized, and suitable numerical (finite elements) models are presented. Subsequently, a novel computational platform is utilized to efficiently scan the entire design space and produce maps for optimally strong designs. The results indicate that a strong compressive response can be obtained by stubby lattice designs at relatively high densities (∼10%) or by selectively thickening the nodes at ultra-low densities.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A.G. Evans , J.W. Hutchinson , N.A. Fleck , M.F. Ashby , and H.N.G. Wadley : The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309 (2011).

A.G. Evans , M.Y. He , and V.S. Deshpande : Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 37, 947 (2010).

T.J. Lu , L. Valdevit , and A.G. Evans : Active cooling by metallic sandwich structures with periodic cores. Prog. Mater. Sci. 50, 789 (2005).

L. Valdevit , A. Pantano , H.A. Stone , and A.G. Evans : Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transfer 49, 3819 (2006).

H.N.G. Wadley , K.P. Dharmasena , M.Y. He , R.M. McMeeking , A.G. Evans , and R. Radovitzky : An active concept for limiting injuries caused by air blasts. Int. J. Impact Eng. 37, 317 (2010).

L. Valdevit , N. Vermaak , F.W. Zok , and A.G. Evans : A materials selection protocol for lightweight actively cooled panels. J. Appl. Mech. 75, 061022 (2008).

L. Valdevit , A.J. Jacobsen , J.R. Greer , and W.B. Carter : Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 15 (2011).

V.S. Deshpande , N.A. Fleck , and M.F. Ashby : Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747 (2001).

F.W. Zok , H.J. Rathbun , Z. Wei , and A.G. Evans : Design of metallic textile core sandwich panels. Int. J. Solids Struct. 40, 5707 (2003).

F.W. Zok , S.A. Waltner , Z. Wei , H.J. Rathbun , R.M. McMeeking , and A.G. Evans : A protocol for characterizing the structural performance of metallic sandwich panels: Application to pyramidal truss cores. Int. J. Solids Struct. 41, 6249 (2004).

L. Valdevit , J.W. Hutchinson , and A.G. Evans : Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41, 5105 (2004).

F.W. Zok , H.J. Rathbun , M.Y. He , E. Ferri , C. Mercer , R.M. McMeeking , and A.G. Evans : Structural performance of metallic sandwich panels with square honeycomb cores. Philos. Mag. 85, 3207 (2005).

H.N.G. Wadley : Cellular metals manufacturing. Adv. Eng. Mater. 4, 726 (2002).

H.N.G. Wadley , N.A. Fleck , and A.G. Evans : Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 13 (2003).

T.A. Schaedler , A.J. Jacobsen , A. Torrents , A.E. Sorensen , J. Lian , J.R. Greer , L. Valdevit, and W.B. Carter : Ultralight metallic microlattices. Science 334, 962 (2011).

A. Torrents , T.A. Schaedler , A.J. Jacobsen , W.B. Carter , and L. Valdevit : Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 3511 (2012).

J.R. Greer and J.T.M. De Hosson : Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

K.J. Maloney , C.S. Roper , A.J. Jacobsen , L. Valdevit , W.B. Carter , and T.A. Schaedler : Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Materials (2013, in press).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *