Skip to main content
×
×
Home

Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

  • Michael C. Gao (a1), Pan Gao (a2), Jeffrey A. Hawk (a3), Lizhi Ouyang (a4), David E. Alman (a3) and Mike Widom (a5)...
Abstract

This article provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if the same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: michael.gao@netl.doe.gov
Footnotes
Hide All

Contributing Editor: Susan B. Sinnott

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
3. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
4. Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, 2016); p. 516.
5. Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
6. Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
7. Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).
8. Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
9. Fang, S., Xiao, X., Xia, L., Li, W., and Dong, Y.: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).
10. Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 104, 53 (2015).
11. Ye, Y.F., Liu, C.T., and Yang, Y.: A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152 (2015).
12. Wang, Z.J., Qiu, W.F., Yang, Y., and Liu, C.T.: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).
13. King, D.J.M., Middleburgh, S.C., McGregor, A.G., and Cortie, M.B.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).
14. Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
15. Senkov, O.N. and Miracle, D.B.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).
16. Poletti, M.G. and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).
17. Toda-Caraballo, I. and Rivera-Diaz-del-Castillo, P.E.J.: A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 71, 76 (2016).
18. Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).
19. Gao, M.C., Carney, C.S., Doğan, Ö.N., Jablonksi, P.D., Hawk, J.A., and Alman, D.E.: Design of refractory high-entropy alloys. JOM 67, 2653 (2015).
20. Zhang, B., Gao, M.C., Zhang, Y., and Guo, S.M.: Senary refractory high-entropy alloy Cr x MoNbTaVW. CALPHAD 51, 193 (2015).
21. Gao, M.C., Zhang, B., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).
22. Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., Zhou, H.F., and Zhang, Y.: NbTaV–(Ti,W) refractory high entropy alloys. Mater. Sci. Eng., A 674, 203 (2016).
23. Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., and Zhou, H.F.: MoNbTaV medium-entropy alloy. Entropy 18, 189 (2016).
24. Zhang, C., Zhang, F., Chen, S.L., and Cao, W.S.: Computational thermodynamics aided high-entropy alloy design. JOM 64, 839 (2012).
25. Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).
26. Zhang, F., Zhang, C., Chen, S.L., Zhu, J., Cao, W.S., and Kattner, U.R.: An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1 (2014).
27. Senkov, O.N., Miller, J.D., Miracles, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32 (2015).
28. Zhang, C. and Gao, M.C.: CALPHAD modeling of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 399.
29. Zhang, B., Gao, M.C., Zhang, Y., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).
30. Gao, M.C.: Design of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 369.
31. Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close packed structure. Metall. Mater. Trans. A 47, 3322 (2016).
32. Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).
33. Widom, M.: Prediction of structure and phase transformations. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 267.
34. Tian, F.Y., Delczeg, L., Chen, N.X., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAl x high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).
35. Tian, F.Y., Wang, Y., Irving, D.L., and Vitos, L.: Applications of coherent potential approximation to HEAs. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 299.
36. Gao, M.C., Niu, C., Jiang, C., and Irving, D.L.: Applications of special quasi-random structures to high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 333.
37. Ma, D., Grabowski, B., Kormann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
38. Bei, H.: Multi-component solid solution alloys having high mixing entropy. USPC, No. US20130108502 A1, UT-BATTELLE, LLC, Oak Ridge, TN, Knoxville, 2013.
39. Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
40. Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
41. Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
42. Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
43. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
44. Wei, S.H., Ferreira, L.G., Bernard, J.E., and Zunger, A.: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).
45. Zunger, A., Wei, S.H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).
46. Monkhorst, H.J. and Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
47. Huhn, W.P. and Widom, M.: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).
48. Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. (2017). (in press). doi: https://doi.org/10.1016/j.cossms.2017.08.001.
49. Ackermann, H., Inden, G., and Kikuchi, R.: Tetrahedron approximation of the cluster variation method for bcc alloys. Acta Metall. 37, 1 (1989).
50. Sundman, B., Jansson, B., and Andersson, J.O.: The Thermo-Calc databank system. CALPHAD 9, 153 (1985).
51. Gulliver, G.H.: The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120 (1913).
52. Scheil, E.: Comments on the layer crystal formation. Z. Metallkd. 34, 70 (1942).
53. Lucas, M.S., Mauger, L., Munoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).
54. Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCr x Ni alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).
55. Le Page, Y. and Saxe, P.: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).
56. Gao, M.C., Suzuki, Y., Schweiger, H., Doğan, Ö.N., Hawk, J., and Widom, M.: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).
57. Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices, 1st ed. (Clarendon Press, Oxford, 1954).
58. Feng, B. and Widom, M.: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. (2017). (in press). doi: https://doi.org/10.1016/j.matchemphys.2017.06.038.
59. Tian, L.Y., Wang, G., Harris, J.S., Irving, D.L., Zhao, J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).
60. Ge, H.J., Tian, F.Y., and Wang, Y.: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations. Comput. Mater. Sci. 128, 185 (2017).
61. Tian, F.Y., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).
62. Wang, Z., Guo, S., and Liu, C.T.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).
63. Zhang, B.L., Mu, Y., Gao, M.C., Meng, W.J., and Guo, S.M.: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun. 7, 78 (2017).
64. Sohn, S.W., Liu, Y.H., Liu, J.B., Gong, P., Prades-Rodel, S., Blatter, A., Scanley, B.E., Broadbridge, C.C., and Schroers, J.: Noble metal high entropy alloys. Scr. Mater. 126, 29 (2017).
65. Fultz, B., Anthony, L., Robertson, J.L., Nicklow, R.M., Spooner, S., and Mostoller, M.: Phonon modes and vibrational entropy of mixing in Fe–Cr. Phys. Rev. B 52, 3280 (1995).
66. Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).
67. Munoz, J.A., Lucas, M.S., Delaire, O., Winterrose, M.L., Mauger, L., Li, C.W., Sheets, A.O., Stone, M.B., Abernathy, D.L., Xiao, Y., Chow, P., and Fultz, B.: Positive vibrational entropy of chemical ordering in FeV. Phys. Rev. Lett. 107, 115501 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Gao et al. supplementary material
Supplementary data

 PDF (228 KB)
228 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed