Skip to main content

Conceptual progress for explaining and predicting semiconductor properties

  • Marvin L. Cohen (a1)

After some background discussion, this review will focus on some recent developments in the areas of theoretical studies of semiconductor electronic structure, photovoltaics, semiconducting boron nitride nanotubes, and the search for modified semiconductors and insulators with higher superconducting transition temperatures. The background discussion covers the evolution of studies of solids, which changed dramatically after the development of quantum theory. These conceptual changes resulted in methods for calculating properties of materials and theoretical frameworks for interpreting experimental measurements. In some cases, the theoretical approaches have been successful in predicting new materials and new properties. As stated above, a few examples will be given to illustrate the development of this field.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Cohen M.L. and Chelikowsky J.R.: Electronic Structure and Optical Properties of Semiconductors, 2nd ed. (Springer, Berlin, 1989).
2.Cohen M.L. and Bergstresser T.K.: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zincblende structures. Phys. Rev. 141, 789 (1966).
3.Cohen M.L. and Heine V.: The fitting of pseudopotentials to experimental data and their subsequent application, in Solid State Physics, Vol. 24, edited by Ehrenreich H., Seitz F., and Turnbull D. (Academic Press, New York, 1970), p. 37.
4.Fermi E.: Sullo spostamento per pressione dei termini elevati delle serie spettrali (on the pressure displacement of higher terms in spectral series). Nuovo Cim. 11, 157 (1934).
5.Hellman H.: A new approximation method in the problem of many electrons. J. Chem. Phys. 3, 61 (1935).
6.Phillips J.C. and Kleinman L.: New method for calculating wave functions in crystals and molecules. Phys. Rev. 116, 287 (1959).
7.Hamann D.R., Schluter M., and Chiang C.: Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494 (1979).
8.Troullier N. and Martins J.: Efficient pseudopotentials for planewave calculations. Phys. Rev. B 43, 1993 (1991).
9.Vanderbilt D.: Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B 32, 8412 (1985).
10.Kohn W. and Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
11.Ihm J., Zunger A., and Cohen M.L.: Momentum-space formalism for the total energy of solids. J. Phys. Chem. 12, 4409 (1979).
12.Cohen M.L.: Pseudopotentials and total energy calculations. Phys. Scr. T. 1, 5 (1982).
13.Yin M.T. and Cohen M.L.: Microscopic theory of the phase transformation and lattice dynamics of Si. Phys. Rev. Lett. 45, 1004 (1980).
14.Cohen M.L., Schlüter M., Chelikowsky J.R., and Louie S.G.: Self-consistent pseudopotential method for localized configurations: Molecules. Phys. Rev. B 12, 5575 (1975).
15.Cohen M.L.: Calculation of bulk moduli of diamond and zincblende solids. Phys. Rev. B 32, 7988 (1985).
16.Cohen M.L.: Theory of bulk moduli of hard solids. Mater. Sci. Eng., A 105(106), 11 (1988); in Proceedings of 3rd Conference on Science of Hard Materials (Elsevier, Oxford, 1988), p. 11.
17.Hybertsen M.S. and Louie S.G.: Electron correlation semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).
18.Rohlfing M. and Louie S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. Lett. 81, 2312 (1998).
19.Malone B.D., Sau J.D., and Cohen M.L.: Ab initio study of the optical properties of Si-XII. Phys. Rev. B 78, 161202(R) (2008).
20.Ruffell S., Sears K., Knights A.P., Bradby J.E., and Williams J.S.: Experimental evidence for semiconducting behavior of Si-XII. Phys. Rev. B 83, 075316 (2011).
21.Rubio A., Corkill J., and Cohen M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081 (1994).
22.Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., and Zettl A.: Boron nitride nanotubes. Science 269, 966 (1995).
23.Smith M.W., Jordan K.C., Park C., Kim J-W., Lillehei P.T., Crooks R., and Harrison J.S.: Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009).
24.Blasé X., Rubio A., Louie S.G., and Cohen M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994).
25.Cumings J. and Zettl A.: Field emission and current-voltage properties. Solid State Commun. 129, 661 (2004).
26.Khoo K.H., Mazzoni M.S.C., and Louie S.G.: Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect. Phys. Rev. B 69, 201401 (2004).
27.Ishigami M., Sau J.D., Aloni S., Cohen M.L., and Zettl A.: Observation of the giant Stark effect in boron-nitride nanotubes. Phys. Rev. Lett. 94, 056804 (2005).
28.Cohen M.L. and Zettl A.: The physics of boron nitride nanotubes. Phys. Today 63, 34 (2010).
29.Onnes H.K.: The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden, 120b, 122b, 124c (1911).
30.Bardeen J., Cooper L.N., and Schrieffer J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957).
31.Bednorz J.G. and Muller K.A.: Possible high Tc superconductivity in Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986).
32.Gao L., Xue Y., Chen F., Xiong Z., Meng R.L., Ramirez D., and Chu C.W.: Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=a, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260 (1994).
33.Cohen M.L.: Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511 (1964).
34.Cohen M.L.: Superconductivity in low-carrier-density systems: Degenerate semiconductors, in Superconductivity, edited by Parks R.D. (Marcel Dekker, Inc., New York, 1969), p. 615.
35.Schooley J.F., Hosler W.R., and Cohen M.L.: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).
36.McMillan W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).
37.Allen P.B. and Dynes R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).
38.Eliashberg G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696 (1960).
39.Kresin V.Z.: On the critical temperature for any strength of the electron-phonon coupling. Phys. Lett. A 122, 434 (1987).
40.Bourne L.C., Zettl A., Barbee T.W. III, and Cohen M.L.: Complete absence of isotope effect in YBa2CuxO7: Consequences for phonon-mediated superconductivity. Phys. Rev. B 36, 3990 (1987).
41.Chang K.J., Dacorogna M.M., Cohen M.L., Mignot J.M., Chouteau G., and Martinez G.: Superconductivity in high-pressure metallic phases of Si. Phys. Rev. Lett. 54, 2375 (1985).
42.Giustino F., Cohen M.L., and Louie S.G.: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007).
43.Moussa J.E. and Cohen M.L.: Constraints on Tc for superconductivity in heavily boron-doped diamond. Phys. Rev. B 77, 064518 (2008).
44.Noffsinger J., Giustino F., Louie S.G., and Cohen M.L.: Origin of superconductivity in boron-doped silicon carbide from first principles. Phys. Rev. B 79, 104511 (2009).
45.Moussa J.E. and Cohen M.L.: Two bounds on the maximum phonon-mediated superconducting transition temperature. Phys. Rev. B 74, 094520 (2006).
46.Moussa J.E. and Cohen M.L.: Using molecular fragments to estimate electron-phonon coupling and possible superconductivity in covalent materials. Phys. Rev. B 78, 064502 (2008).
47.Ekimov E.A., Sidorov V.A., Bauer E.D., Mel’nik N.N., Curro N.J., Thompson J.D., and Stishov S.M.: Superconductivity in diamond. Nature 428, 542 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 99 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.