Skip to main content
×
×
Home

Continuum modeling of large-strain deformation modes in gold nanowires

  • Omid Rezvanian (a1) and Mohammed A. Zikry (a1)
Abstract

Metallic nanostructures and specifically nanowires can be used for technological breakthroughs. Experimental measurements have provided insights on the mechanical properties of metallic nanostructures. In conjunction, modeling analyses provide an understanding of the underlying deformation and strengthening mechanisms in nanostructures. Most modeling studies on nanostructures are based on atomistic and molecular dynamics simulations, and though invaluable, they are limited to nanoscale dimensions of a few tens of nanometers, at small temporal scales, and physically unrealistic strain rates. Furthermore, most of the current applications for free-standing metallic nanostructures require high aspect ratios with at least one dimension greater than a few hundred nanometers. A continuum microstructurally based approach can, therefore, provide insights on design of one-dimensional nanowires on a physically relevant scale. Hence, we use a multiple-slip crystal plasticity formulation that is adapted to single crystal gold nanowires to simulate the experimental setup for a two-end fixed nanowire subjected to bending.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: zikry@ncsu.edu
References
Hide All
1.Marinov, T., Buldum, A., Clemons, C.B., Kreider, K.L., Young, G.W., and Hariharan, S.I.: Field emission from coated nanowires. J. Appl. Phys. 98, 044314 (2005).
2.Lee, Y.-H. Choi, C.-H.: Jang, Y.-T., Kim, E.-K., Ju, B.-K., Min, N.-K., and Ahn, J.-H.: Tungsten nanowires and their field-emission properties. Appl. Phys. Lett. 81, 745 (2002).
3.Lee, C.-K., Lee, B., Ihm, J., and Han, S.: Field emission of metal nanowires studied by first-principle methods. Nanotechnology 18, 475706 (2007).
4.Dong, L., Bush, J., Chirayos, V., Solanki, R., and Jiao, J.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112 (2005).
5.Yogeswaran, U. and Chen, S.-M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors (Basel Switzerland) 8, 290 (2008).
6.Walter, E.C., Penner, R.M., Liu, H., Ng, K.H., Zach, M.P., and Favier, F.: Sensors from electrodeposited metal nanowires. Surf. Interface Anal. 34, 409 (2002).
7.Ko, Y.-D., Kang, J.-G., Park, J.-G., Lee, S., and Kim, D.-W.: Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20, 455701 (2009).
8.Lee, W.-K., Chen, S., Chilkoti, A., and Zauscher, S.: Fabrication of gold nanowires by electric-field-induced scanning probe lithography and in situ chemical development. Small 3, 249 (2007).
9.Ji, R., Lee, W., Scholz, R., Gosele, U., and Nielsch, K.: Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition. Adv. Mater. 18, 2593 (2006).
10.Sosnova, M.V., Dmitruk, N.L., Korovin, A.V., Mamykin, S.V., Mynko, V.I., and Lytvyn, O.S.: Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications. Appl. Phys. B 99, 493 (2010).
11.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).
12.Hyde, B., Espinosa, H.D., and Farkas, D.: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 5759, 62 (2005).
13.Park, H.S. and Zimmerman, J.A.: Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005).
14.Gall, K., Diao, J., and Dunn, M.L.: The strength of gold nanowires. Nano Lett. 4, 2431 (2004).
15.Crill, J.W., Ji, X., Irving, D.L., Brenner, D.W., and Padgett, C.W.: Atomic and multi-scale modeling of non-equilibrium dynamics at metal-metal contacts. Modell. Simul. Mater. Sci. Eng. 18, 034001 (2010).
16.Horstemeyer, M.F., Baskes, M.I., and Plimpton, S.J.: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363 (2001).
17.Timoshenko, S.P. and Goodier, J.N.: Theory of Elasticity (McGraw Hill Higher Education, New York; 3rd edition, 1970).
18.Li, X., Gao, H., Murphy, C.J., and Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).
19.Rodrigues, V. and Ugarte, D.: Structural and electronic properties of gold nanowires. Eur. Phys. J. D 16, 395 (2001).
20.Agrait, N., Rubio, G., and Vieira, S.: Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995 (1995).
21.Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).
22.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).
23.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).
24.Rezvanian, O. and Zikry, M.A.: Inelastic contact behavior of crystalline asperities in rf MEMS devices. J. Eng. Mater. Technol. 131, 011002 (2009).
25.Zikry, M.A. and Nemat-Nasser, S.: High strain-rate localization and failure of crystalline materials. Mech. Mater. 10, 215 (1990).
26.Rezvanian, O., Zikry, M.A., and Rajendran, A.M.: Statistically stored, geometrically necessary and grain boundary dislocation densities: Microstructural representation and modelling. Proc. R. Soc. Lond., Ser. A 463, 2833 (2007).
27.Zikry, M.A. and Kao, M.: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765 (1996).
28.Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).
29.Broyden, C.G.: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. J. Inst. Math. Appl. 6(3), 222 (1970).
30.Hughes, T.J.R.: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15, 1413 (1980).
31.Dietiker, M., Nyilas, R.D., Solenthaler, C., and Spolenak, R.: Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity. Acta Mater. 56, 3887 (2008).
32.Hallmark, V.M., Chiang, S., Rabolt, J.F., Swalen, J.D., and Wilson, R.J.: Observation of atomic corrugation on Au (111) by scanning tunneling microscopy. Phys. Rev. Lett. 59, 2879 (1987).
33.Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentien, J.-L., and Hytch, M.J.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 (2003).
34.Shan, D.-B., Wang, C.-J., Guo, B., and Wang, X.-W.: Effect of thickness and grain size on material behavior in micro-bending. Trans. Nonferrous Met. Soc. China 19, 507 (2009).
35.Riaz, M., Fulati, A., Yang, L.L., Nur, O., Willander, M., and Klason, P.: Bending flexibility, kinking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods. J. Appl. Phys. 104, 104306 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 100 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th August 2018. This data will be updated every 24 hours.