Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Chernikova, Anna Kozodaev, Maksim Markeev, Andrei Negrov, Dmitrii Spiridonov, Maksim Zarubin, Sergei Bak, Ohheum Buragohain, Pratyush Lu, Haidong Suvorova, Elena Gruverman, Alexei and Zenkevich, Andrei 2016. Ultrathin Hf0.5Zr0.5O2Ferroelectric Films on Si. ACS Applied Materials & Interfaces, Vol. 8, Issue. 11, p. 7232.

    Kumar, Mohit Basu, Tanmoy and Som, Tapobrata 2016. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries. Journal of Applied Physics, Vol. 119, Issue. 1, p. 014307.

    Balke, Nina Maksymovych, Petro Jesse, Stephen Herklotz, Andreas Tselev, Alexander Eom, Chang-Beom Kravchenko, Ivan I. Yu, Pu and Kalinin, Sergei V. 2015. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, Vol. 9, Issue. 6, p. 6484.

    Li, Yanxi Wang, Zhongchang Yao, Jianjun Yang, Tiannan Wang, Zhiguang Hu, Jia-Mian Chen, Chunlin Sun, Rong Tian, Zhipeng Li, Jiefang Chen, Long-Qing and Viehland, Dwight 2015. Magnetoelectric quasi-(0-3) nanocomposite heterostructures. Nature Communications, Vol. 6, p. 6680.

    Caruntu, Gabriel Yourdkhani, Amin Vopsaroiu, Marian and Srinivasan, Gopalan 2012. Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale, Vol. 4, Issue. 10, p. 3218.

    Kathan-Galipeau, K. Wu, P. P. Li, Y. L. Chen, L. Q. Soukiassian, A. Zhu, Y. Muller, D. A. Xi, X. X. Schlom, D. G. and Bonnell, D. A. 2012. Direct determination of the effect of strain on domain morphology in ferroelectric superlattices with scanning probe microscopy. Journal of Applied Physics, Vol. 112, Issue. 5, p. 052011.

    Xie, Shuhong Ma, Feiyue Liu, Yuanming and Li, Jiangyu 2011. Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale, Vol. 3, Issue. 8, p. 3152.

    Morelli, A. Venkatesan, Sriram Kooi, B. J. Palasantzas, G. and De Hosson, J. Th. M. 2009. Piezoelectric properties of PbTiO[sub 3] thin films characterized with piezoresponse force and high resolution transmission electron microscopy. Journal of Applied Physics, Vol. 105, Issue. 6, p. 064106.

    Herber, Ralf-Peter Schröter, Christian Wessler, Berit and Schneider, Gerold A. 2008. High throughput screening of piezoelectric response of ferroelectric thin films with automated scanning probe microscopy. Thin Solid Films, Vol. 516, Issue. 23, p. 8609.

    Peter, F. Kubacki, J. Szot, K. Reichenberg, B. and Waser, R. 2006. Influence of adsorbates on the piezoresponse of KNbO3. physica status solidi (a), Vol. 203, Issue. 3, p. 616.

    Hua-Rong, Zeng Han-Feng, Yu Rui-Qing, Chu Guo-Rong, Li and Qing-Rui, Yin 2005. Ferroelectric Domain Imaging Mechanism in High-Vacuum Scanning Force Microscopy. Chinese Physics Letters, Vol. 22, Issue. 1, p. 43.

    Kalinin, Sergei V. Shao, Rui and Bonnell, Dawn A. 2005. Local Phenomena in Oxides by Advanced Scanning Probe Microscopy. Journal of the American Ceramic Society, Vol. 88, Issue. 5, p. 1077.

    Soergel, E. 2005. Visualization of ferroelectric domains in bulk single crystals. Applied Physics B, Vol. 81, Issue. 6, p. 729.

    Peter, F. Szot, K. Waser, R. Reichenberg, B. Tiedke, S. and Szade, J. 2004. Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials. Applied Physics Letters, Vol. 85, Issue. 14, p. 2896.

    Lin, Heh-Nan Chen, Sy-Hann Ho, Shu-Te Chen, Ping-Ren and Lin, I-Nan 2003. Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by piezoresponse force microscopy using electrically characterized tips. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue. 2, p. 916.


Contrast Mechanism Maps for Piezoresponse Force Microscopy

  • Sergei V. Kalinin (a1) and Dawn A. Bonnell (a1)
  • DOI:
  • Published online: 01 January 2011

Piezoresponse force microscopy (PFM) is one of the most established techniques for the observation and local modification of ferroelectric domain structures on the submicron level. Both electrostatic and electromechanical interactions contribute at the tip-surface junction in a complex manner, which has resulted in multiple controversies in the interpretation of PFM. Here we analyze the influence of experimental conditions such as tip radius of curvature, indentation force, and cantilever stiffness on PFM image contrast. These results are used to construct contrast mechanism maps, which correlate the imaging conditions with the dominant contrast mechanisms. Conditions under which materials properties can be determined quantitatively are elucidated.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.O. Kolosov , A. Gruverman , J. Hatano , K. Takahashi , and H. Tokumoto , Phys. Rev. Lett. 74, 4309 (1995).

3.C.S. Ganpule , V. Nagarjan , H. Li , A.S. Ogale , D.E. Steinhauer , S. Aggarwal , E. Williams , R. Ramesh , and P. De Wolf , Appl. Phys. Lett. 77, 292 (2000).

4.A. Gruverman and Y. Ikeda , Jpn. J. Appl. Phys. 37, L939 (1998).

5.S. Hong , E.L. Colla , E. Kim , K. No , D.V. Taylor , A.K. Tagantsev , P. Muralt , and N. Setter , J. Appl. Phys. 86, 607 (1999).

6.J.A. Christman , S.H. Kim , H. Maiwa , J.P. Maria , B.J. Rodriguez , A.I. Kingon , and R.J. Nemanich , J. Appl. Phys. 87, 8031 (2000).

7.S.V. Kalinin and D.A. Bonnell , J. Appl. Phys. 87, 3950 (2000).

8.E.Z. Luo , Z. Xie , J.B. Xu , I.H. Wilson , and L.H. Zhao , Phys. Rev. B 61, 203 (2000).

9.V. Likodimos , M. Labardi , and M. Allegrini , Phys. Rev. B 61, 14440 (2000).

11.A. Gruverman , O. Auciello , and H. Tokumoto , Annu. Rev. Mater. Sci. 28, 101 (1998).

12.J.W. Hong , K.H. Noh , S.I. Park , S.I. Kwun , and Z.G. Kim , Rev. Sci. Instrum. 70, 1735 (1999).

13.L.M. Eng , H-J. Guntherodt , G.A. Schneider , U. Kopke , and J. Munoz Saldana, Appl. Phys. Lett. 74, 233 (1999).

15.S. Hong , J. Woo , H. Shin , J.U. Jeon , Y.E. Pak , E.L. Colla , N. Setter , E. Kim , and K. No , J. Appl. Phys. 89, 1377 (2001).

17.A.E. Giannakopoulos and S. Suresh , Acta Mater. 47, 2153 (1999).

18.E. Karapetian , I. Sevostianov , and M. Kachanov , Philos. Mag. B 80, 331 (2000).

20.D. Berlincourt , in Ultrasonic Transducer Materials, edited by O.E. Mattiat (Plenum Press, New York, 1971).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *