Skip to main content
×
Home
    • Aa
    • Aa

Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

  • Suresh Vishwanath (a1), Xinyu Liu (a2), Sergei Rouvimov (a3), Leonardo Basile (a4), Ning Lu (a5), Angelica Azcatl (a5), Katrina Magno (a6), Robert M. Wallace (a7), Moon Kim (a7), Juan-Carlos Idrobo (a8), Jacek K. Furdyna (a9), Debdeep Jena (a10) and Huili Grace Xing (a10)...
Abstract
Abstract

Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2. Reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: sv372@cornell.edu
b) e-mail: grace.xing@cornell.edu
References
Hide All
1. GeimA.K. and NovoselovK.S.: The rise of graphene. Nat. Mater. 6, 183191 (2007).
2. LotschB.V.: Superlattices of 2D nanosheets. Annu. Rev. Mater. Res. 45(1), 85109 (2015).
3. WangF., WangZ., WangQ., WangF., YinL., XuK., HuangY., and HeJ.: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26(29), 292001 (2015).
4. ButlerS.Z., HollenS.M., CaoL., CuiY., GuptaJ.A., GutieH.R., HeinzT.F., HongS.S., HuangJ., IsmachA.F., Johnston-halperinE., KunoM., PlashnitsaV.V., RobinsonR.D., RuoffR.S., SalahuddinS., ShanJ., ShiL., SpencerO.M.G., TerronesM., WindlW., and GoldbergerJ.E.: Opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 28982926 (2013).
5. ZhaoW., RibeiroR.M., and EdaG.: Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48, 9199 (2015).
6. HorY.S., RichardellaA., RoushanP., XiaY., CheckelskyJ.G., YazdaniA., HasanM.Z., OngN.P., and CavaR.J.: P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B: Condens. Matter Mater. Phys. 79(19), 26 (2009).
7. BoschkerJ.E., MomandJ., BragagliaV., WangR., PerumalK., GiussaniA., KooiB.J., RiechertH., and CalarcoR.: Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. Nano Lett. 14(6), 35343538 (2014).
8. DasS. and AppenzellerJ.: WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103(10), 103501 (2013).
9. RossJ.S., KlementP., JonesA.M., GhimireN.J., YanJ., MandrusD.G., TaniguchiT., WatanabeK., KitamuraK., YaoW., CobdenD.H., and XuX.: Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9(4), 268272 (2014).
10. KimK., LarentisS., FallahazadB., LeeK., XueJ., DillenD.C., CorbetC.M., and TutucE.: Band alignment in WSe2 graphene heterostructures. ACS Nano 9(4), 45274532 (2015).
11. HaighS.J., GholiniaA., JalilR., RomaniS., BritnellL., EliasD.C., NovoselovK.S., PonomarenkoL.A., GeimA.K., and GorbachevR.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11(9), 764767 (2012).
12. LinY., LuN., Perea-lopezN., LiJ., LinZ., PengX., LeeC.H., SunC., CalderinL., BrowningP.N., BresnehanM.S., KimM.J., MayerT.S., TerronesM., and RobinsonJ.A.: Direct synthesis of van der Waals solids. ACS Nano 8(4), 37153723 (2014).
13. HuangC., WuS., SanchezA.M., PetersJ.J.P., BeanlandR., RossJ.S., RiveraP., YaoW., CobdenD.H., and XuX.: Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 10961101 (2014).
14. MoonJ.S., SeoH., StratanF., AntcliffeM., SchmitzA., RossR.S., KiselevA.A., WheelerV.D., NyakitiL.O., GaskillD.K., LeeK-M., and AsbeckP.M.: Lateral graphene heterostructure field-effect transistor. IEEE Electron Device Lett. 34(9), 11901192 (2013).
15. LiangD., SchmidtJ.R., and JinS.: Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14(6), 30473054 (2014).
16. BöttnerH., ChenG., and VenkatasubramanianR.: Aspects of thin fim superlattice thermoeletric materials, devices, and applications. MRS Bull. 31, 211217 (2006).
17. OsterhageH., GoothJ., HamdouB., GwozdzP., ZieroldR., and NielschK.: Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 105(12), 123117 (2014).
18. OhuchiF.S., ShimadaT., ParkinsonB.A., UenoK., and KomaA.: Growth of MoSe2 thin films with Van der Waals epitaxy. J. Cryst. Growth 111, 10331037 (1991).
19. OhuchiF.S., ParkinsonB.A., UenoK., and KomaA.: van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 . J. Appl. Phys. 68(5), 2168 (1990).
20. SchlafR., LangO., PettenkoferC., and JaegermannW.: Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 85(5), 2732 (1999).
21. TiefenbacherS., SehnertH., PettenkoferC., and JaegermannW.: Epitaxial films of WS2 by metal organic van der Waals epitaxy (MO-VDWE). Surf. Sci. 318, L1161L1164 (1994).
22. HammondC., BackA., LawrenceM., NebesnyK., LeeP., SchlafR., and ArmstrongN.R.: Growth of layered semiconductors by molecular-beam epitaxy: Formation and characterization of GaSe, MoSe2, and phthalocyanine ultrathin films on sulfur-passivated GaP(111). J. Vac. Sci. Technol., A 13(3), 1768 (1995).
23. HayashiT., UenoK., SaikiK., and KomaA.: Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate. J. Cryst. Growth 219, 115122 (2000).
24. VishwanathS., LiuX., RouvimovS., MendeP.C., AzcatlA., McDonnellS., WallaceR.M., FeenstraR.M., FurdynaJ.K., JenaD., and Grace XingH.: Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2(2), 024007 (2015).
25. UgedaM.M., BradleyA.J., ShiS-F., da JornadaF.H., ZhangY., QiuD.Y., RuanW., MoS-K., HussainZ., ShenZ-X., WangF., LouieS.G., and CrommieM.F.: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 10911095 (2014).
26. XenogiannopoulouE., TsipasP., AretouliK.E., TsoutsouD., GiaminiS.A., BaziotiC., DimitrakopulosG.P., KomninouP., BremsS., HuyghebaertC., RaduI.P., and DimoulasA.: High-quality large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7, 78967905 (2015).
27. LiuH., ZhengH., YangF., JiaoL., ChenJ., HoW., and GaoC.: Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 9(6), 66196625 (2015).
28. XuS-Y., AlidoustN., BelopolskiI., RichardellaA., LiuC., NeupaneM., BianG., HuangS-H., SankarR., FangC., DellabettaB., DaiW., LiQ., GilbertM.J., ChouF., SamarthN., and HasanM.Z.: Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943950 (2014).
29. LiuS., YuanX., WangP., ChenZ., TangL., ZhangE., and ZhangC.: Controllable growth of vertical heterostructure GaTexSe1−x/Si by molecular beam epitaxy. ACS Nano 9(8), 85928598 (2015).
30. GeimA.K. and GrigorievaI.V.: Van der Waals heterostructures. Nature 499(7459), 419425 (2013).
31. GongC., ZhangH., WangW., ColomboL., WallaceR.M., and ChoK.: Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).
32. McCarthyL.S., SmorchkovaI.P., XingH., KozodoyP., FiniP., LimbJ., PulfreyD.L., SpeckJ.S., RodwellM.J.W., DenBaarsS.P., and MishraU.K.: GaN HBT: Toward an RF device. IEEE Trans. Electron devices 48(3), 543551 (2001).
33. KroemerH.: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 70, 1325 (1982).
34. GoodhueW.D.: Using molecular-beam epitaxy to fabricate quantum-well devices. Linc. Lab. J. 2, 183205 (1989).
35. BernèdeJ., AmoryC., AssmannL., and SpiesserM.: X-ray photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl. Surf. Sci. 219(3–4), 238248 (2003).
36. ParkJ.C., YunS.J., KimH., ParkJ., ChaeS.H., AnS., KimJ-G., KimS., KimK.K., and LeeY.H.: Phase-engineered synthesis 2H-molybdenum ditelluride thin films. ACS Nano 9(6), 65486554 (2015).
37. NitscheR., BolsterliH.U., and LichtenstrigerM.: Crystal growth by chemical transport reactions—I. J. Phys. Chem. Solids 21(3/4), 199205 (1961).
38. BernedeJ.C., KettafM., KhelilA., and SpiesserM.: p-n junctions in molybdenum ditelluride. Phys. Status Solidi A 157, 205209 (1996).
39. XiaoS., LiM., SeabaughA., DebdeepJ., and XingH.G.: Vertical heterojunction of MoS2 and WSe2 . Device Res. Conf. 72, 169170 (2014).
40. YanR., FathipourS., HanY., SongB., XiaoS., LiM., MaN., ProtasenkoV., MullerD.A., JenaD., and XingH.G.: Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15(9), 57915798 (2015).
41. (Oscar) LiM., EsseniD., SniderG., JenaD., and Grace XingH.: Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115(7), 074508 (2014).
42. LezamaI.G., AroraA., UbaldiniA., BarreteauC., GianniniE., PotemskiM., and MorpurgoA.F.: Indirect-to-direct band gap crossover in few-layer MoTe2 . Nano Lett. 15(4), 23362342 (2015).
43. TongayS., SahinH., KoC., LuceA., FanW., LiuK., ZhouJ., HuangY-S., HoC-H., YanJ., OgletreeD.F., AloniS., JiJ., LiS., LiJ., PeetersF.M., and WuJ.: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).
44. SugiyamaM., MaeyamaS., and OshimaM.: Surface-structure analysis of sulfur-passivated GaAs(111)A and GaAs(111)B by x-ray standing-wave triangulation. Phys. Rev. B 48(15), 1103711042 (1993).
45. UenoK., ShimadaT., SaikiK., and KomaA.: Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur-terminated GaAs{111} surfaces. Appl. Phys. Lett. 56(4), 327 (1990).
46. AbstreiterG., BauserE., FischerA., and PloogK.: Raman spectroscopy—A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1−xAs. Appl. Phys. 16(4), 345352 (1978).
47. BökerT., SeverinR., MüllerA., JanowitzC., ManzkeR., VoßD., KrügerP., MazurA., and PollmannJ.: Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001).
48. LiuX., SmithD.J., CaoH., ChenY.P., FanJ., ZhangY-H., PimpinellaR.E., DobrowolskaM., and FurdynaJ.K.: Characterization of Bi2Te3 and Bi2Se3 topological insulators grown by MBE on (001) GaAs substrates. J. Vac. Sci. Technol., B 30(2), 02B103 (2012).
49. VishwanathS., LiuX., RouvimovS., AzcatlA., WallaceR.M., FurdynaJ.K., JenaD., and Grace XingH.: MBE growth of MoTe2 . (2015). In preparation.
50. HeR., WangZ., QiuR.L.J., DelaneyC., BeckB., KiddT.E., ChanceyC.C., and GaoX.P.A.: Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 23(45), 455703 (2012).
51. RichterW., KohlerH., and BeckerC.R.: A raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x <1), (Bi1−ySby)2Te3 (0 < y <1). Phys. Status Solidi B 84, 619628 (1977).
52. YamamotoM., WangS.T., NiM., LinY.F., LiS.L., AikawaS., Bin JianW., UenoK., WakabayashiK., and TsukagoshiK.: Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2 . ACS Nano 8(4), 38953903 (2014).
53. ZhaoL-D., LoS-H., ZhangY., SunH., TanG., UherC., WolvertonC., DravidV.P., and KanatzidisM.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373377 (2014).
54. LiL., ChenZ., HuY., WangX., ZhangT., ChenW., and WangQ.: Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135(4), 12131216 (2013).
55. ShimadaT., OhuchiF.S., and KomaA.: Molecular beam epitaxy of SnSe2: Chemistry and electronic properties of interfaces. Jpn. J. Appl. Phys. 32, 11821185 (1993).
56. SchlafR., LouderD., LangO., PettenkoferC., JaegermannW., NebesnyK.W., LeeP.A., ParkinsonB.A., and ArmstrongN.R.: Molecular beam epitaxy growth of thin films of SnS2 and SnSe2 on cleaved mica and the basal planes of single-crystal layered semiconductors: Reflection high-energy electron diffraction, low-energy electron diffraction, photoemission, and scanning tunnelin. J. Vac. Sci. Technol., A 13(3), 1761 (1995).
57. MeadD.G. and IrwinJ.C.: Raman spectra of SnS2 and SnSe2 . Solid State Commun. 20, 885887 (1976).
58. SmithA.J., MeekP.E., and LiangW.Y.: Raman scattering studies of SnS2 and SnSe2 . J. Phys. Chem. C 10, 1321 (1977).
59. VishwanathS., LiuX., RouvimovS., FurdynaJ.K., JenaD., and Grace XingH.: Influence of growth conditions on MBE tin selenide on GaAs (111)B. (2015). In preparation.
60. BoscherN.D., CarmaltC.J., PalgraveR.G., and ParkinI.P.: Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 516, 47504757 (2008).
61. TerronesH., López-UríasF., and TerronesM.: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).
62. GaoG., GaoW., CannucciaE., Taha-TijerinaJ., BalicasL., MathkarA., NarayananT.N., LiuZ., GuptaB.K., PengJ., YinY., RubioA., and AjayanP.M.: Artificially stacked atomic layers: Toward new van der Waals solids. Nano Lett. 12(7), 35183525 (2012).
63. HeJ., HummerK., and FranchiniC.: Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2,WS2, and WSe2 . Phys. Rev. B 89(7), 075409 (2014).
64. Herrera-GómezA., HegedusA., and MeissnerP.L.: Chemical depth profile of ultrathin nitrided SiO2 films. Appl. Phys. Lett. 81(6), 10141016 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 89
Total number of PDF views: 327 *
Loading metrics...

Abstract views

Total abstract views: 1031 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.