Skip to main content
×
×
Home

Controlled synthesis of polystyrene-assisted tin-doped indium oxide nanowire networks

  • Qiang Li (a1), Lungang Feng (a2), Shuai Wang (a2), Yu-Feng Li (a1) and Feng Yun (a1)...
Abstract

Polystyrene spheres were found to be an effective assisted material in the growth of indium-tin-oxide (ITO) nanowire networks, bearing low temperature, high purity, and good control of size. The temperature and time of growth were studied to achieve ITO nanowire networks with high transmission and low resistivity. When prepared by PS spheres of 670 nm dia. for 15 min at 300 °C, the transmittance is above 90% after the wave length of 400 nm, and the sheet resistance is ∼200 Ω/□. Polystyrene-assisted ITO nanowires showed the high degree of crystallinity with lattice fringes, and well coincided cubic phase of In2O3. The density of ITO nanowire networks were controlled by polystyrene spheres and the residual polystyrene was removed by thermal annealing. ITO nanowire networks open new opportunities for optoelectronic devices needing special morphology for the improvement of light extraction efficiency, and as a new type of conductive film, which have an even broad application arena.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: fyun2010@mail.xjtu.edu.cn
Footnotes
Hide All

Contributing Editor: Winston V. Schoenfeld

Footnotes
References
Hide All
1. Li, C., Zhang, D., Han, S., Liu, X., Tang, T., and Zhou, C.: Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 15, 143146 (2003).
2. Bellew, A.T., Bell, A.P., Mccarthy, E.K., Fairfield, J.A., and Boland, J.J.: Programmability of nanowire networks. Nanoscale 6, 9632 (2014).
3. Kim, H.W., Kim, H.S., Na, H.G., Yang, J.C., Choi, R., Jeong, J.K., Lee, C., and Kim, D.Y.: One-step fabrication and characterization of silica-sheathed ITO nanowires. J. Solid State Chem. 183, 24902495 (2010).
4. Borgström, M.T., Immink, G., Ketelaars, B., Algra, R., and Bakkers, E.: Synergetic nanowire growth. Nat. Nanotechnol. 2, 541544 (2007).
5. Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y., Pan, X., and Lu, W.: High-performance transparent conducting oxide nanowires. Nano Lett. 6, 29092915 (2006).
6. Hill, J.J., Banks, N., Haller, K., Orazem, M.E., and Ziegler, K.: An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core–shell nanowires arrays. J. Am. Chem. Soc. 133, 1866318672 (2011).
7. Noh, J.H., Han, H.S., Lee, S., Kim, J.Y., Hong, K.S., Han, G.S., Shin, H., and Jung, H.S.: Nanowire-based three-dimensional transparent conducting oxide electrodes for extremely fast charge collection. Adv. Energy Mater. 1, 829835 (2011).
8. Xue, X.Y., Chen, Y.J., Liu, Y.G., Shi, S.L., Wang, Y.G., and Wang, T.H.: Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl. Phys. Lett. 88, 201907 (2006).
9. Afshar, M., Preiß, E.M., Sauerwald, T., Rodner, M., Feili, D., Straub, M., König, K., Schütze, A., and Seidel, H.: Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching. Sens. Actuators, B 215, 525535 (2015).
10. Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., and Newton, R.: Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 14251427 (2000).
11. Freeman, A.J., Poeppelmeier, K.R., Mason, T.O., Chang, R.P.H., and Marks, T.J.: Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull. 25, 4551 (2000).
12. Joanni, E., Savu, R., Desousagoes, M., Bueno, P., Defreitas, J., Nogueira, A., Longo, E., and Varela, J.: Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scr. Mater. 57, 277280 (2007).
13. Wang, G.J., Chen, H.T., and Yang, H.: Fabrication of crystalline indium tin oxide nanobasket electrodes using aluminum anodic oxide template. Jpn. J. Appl. Phys. 47, 57275729 (2008).
14. Yang, F. and Forrest, S.R.: Photocurrent generation in nanostructured organic solar cells. ACS Nano 2, 10221032 (2008).
15. Yu, P., Chang, C.H., Su, M.S., Hsu, M.H., and Wei, K.H.: Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells. Appl. Phys. Lett. 96, 153307 (2010).
16. Fung, M.K., Sun, Y.C., Ng, A., Ng, A.M.C., Djurišić, A.B., Chan, H.T., and Chan, W.K.: Indium tin oxide nanorod electrodes for polymer photovoltaics. ACS Appl. Mater. Interfaces 3, 522527 (2011).
17. Rider, D.A., Tucker, R.T., Worfolk, B.J., Krause, K.M., Lalany, A., Brett, M.J., Buriak, J.M., and Harris, K.D.: Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells. Nanotechnology 22, 085706 (2011).
18. Savu, R. and Joanni, E.: Effect of processing conditions on the nucleation and growth of indium-tin-oxide nanowires made by pulsed laser ablation. J. Mater. Sci. 43, 609613 (2008).
19. Chang, W.C., Kuo, C.H., Lee, P.J., Chueh, Y.L., and Lin, S.J.: Synthesis of single crystal Sn-doped In2O3 nanowires: Size-dependent conductive characteristics. Phys. Chem. 14, 1304113045 (2012).
20. Park, H.K., Yoon, S.W., Chung, W.W., Min, B.K., and Do, Y.R.: Fabrication and characterization of large-scale multifunctional transparent ITO nanorod film. J. Mater. Chem. A 1, 5860 (2013).
21. Dattoli, E.N. and Lu, W.: ITO nanowires and nanoparticles for transparent films. MRS Bull. 36, 782 (2011).
22. Johnson, M.C., Aloni, S., McCready, D.E., and Bourret-Courchesne, E.D.: Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 6, 19361941 (2006).
23. Meng, G., Yanagida, T., Nagashima, K., Yoshida, H., Kanai, M., Klamchuen, A., Zhuge, F., He, Y., Rahong, S., Fang, X., Takeda, S., and Kawai, T.: Impact of preferential indium nucleation on electrical conductivity of vapor–liquid–solid grown indium–tin oxide nanowires. J. Am. Chem. Soc. 135, 70337038 (2013).
24. Hashim, A.: Nanowires-Implementations and Applications (InTech, Rijeka, Croatia, 2011); pp. 5998.
25. Beaudry, A.L., Tucher, R.T., Laforge, J.M., Taschuk, M.T., and Brete, M.J.: Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition. Nanotechnology 23, 105608 (2012).
26. Kumar, R.R., Rao, K.N., Rajanna, K., and Phani, A.R.: Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties. Mater. Res. Bull. 52, 167 (2014).
27. Yamamoto, N., Morisawa, K., Murakami, J., and Nakatani, Y.: Formation of ITO nanowires using conventional magnetron sputtering. ESC Solid State Lett. 3, 84 (2014).
28. Li, S., Yang, X., and Huang, W.: Synthesis of monodisperse polymer microspheres with mercapto groups and their application as stabilizer for gold metallic colloid. Macromol. Chem. Phys. 206, 19671972 (2005).
29. McDonald, C.J., Bouck, K.J., Chaupt, A.B., and Stevens, C.J.: Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules 33, 15931605 (2000).
30. Bai, F., Yang, X., Li, R., Huang, B., and Huang, W.: Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47, 57755784 (2006).
31. Cong, Y., Xia, T., Zou, M., Li, Z., Peng, B., Guo, D., and Deng, Z.: Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2, 34503461 (2014).
32. Zhao, K., Zhao, J., Wu, C., Zhang, S., Deng, Z., Hu, X., Chen, M., and Peng, B.: Fabrication of silver-decorated sulfonated polystyrene microspheres for surface-enhanced Raman scattering and antibacterial applications. RSC Adv. 5, 6954369554 (2015).
33. Huang, Y., Yun, F., Wang, Y., Ding, W., Li, Y., Wang, H., Zhang, Y., Guo, M., Su, X., Liu, S., and Hou, X.: Surface plasmon enhanced green light emitting diodes with silver nanorod arrays embedded in p-GaN. Jpn. J. Appl. Phys. 53, 084001 (2014).
34. Kumar, R.R., Gaddam, V., Rao, K.N., and Rajanna, K.: Low temperature VLS growth of ITO nanowires by electron beam evaporation method. Mater. Res. Express 1, 035008 (2014).
35. Li, L., Chen, S., Kim, J., Xu, C., Zhao, Y., and Ziegler, K.J.: Controlled synthesis of tin-doped indium oxide nanowires. J. Cryst. Growth 413, 3136 (2015).
36. Wang, Y., Lu, L., and Wu, F.: Indium tin oxide @carbon core-shell nanowire and jagged indium tin oxide nanowire. Nanoscale Res. Lett. 5, 1682 (2010).
37. Yu, H.K. and Lee, J.L.: Effect of ion beam assisted deposition on the growth of indium tin oxide (ITO) nanowires. CrystEngComm 16, 4108 (2014).
38. Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).
39. Dam, D.T., Wang, X., and Lee, J.M.: Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in super capacitors. RSC Adv. 2, 10512 (2012).
40. Maestre, D., Cremades, A., Gregoratti, L., and Piqueras, J.: Indium tin oxide micro- and nanostructures grown by thermal treatment of InN/SnO2 . J. Phys. Chem. C 114, 34113415 (2010).
41. Nguyen, P., Vaddiraju, S., and Meyyappan, M.: Indium and tin oxide nanowires by vapor–liquid–solid growth technique. J. Electron. Mater. 35, 200206 (2006).
42. Pan, D.H-K. and Prest, W.M.: Surface of polymer blends: X-ray photoelectron spectroscopy studies of polystyrene poly blends. J. Appl. Phys. 58(8), 28612870 (1985).
43. Wan, N., Xu, J., Chen, G., Gan, X., Guo, S., Xu, L., and Chen, K.: Broadband anti-reflection and enhanced field emission from catalyst-free grown small-sized ITO nanowires at a low temperature. Acta Mater. 58, 30683072 (2010).
44. Garnett, E. and Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10, 10821087 (2010).
45. Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S.H.: Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters. Nano Lett. 9, 15491554 (2009).
46. Kim, B.J., Lee, C., Jung, Y., Baik, K.H., Mastro, M.A., Hite, J.K., Eddy, C.R., and Kim, J.: Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Appl. Phys. Lett. 99, 143101 (2011).
47. Pang, S., Hernandez, Y., Feng, X., and Müllen, K.: Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 27792795 (2011).
48. Li, Q., Gong, Z., Wang, S., Wang, J., Zhang, Y., and Yun, F.: Bipolar resistive switching behaviors of ITO nanowire networks. AIP Adv. 6, 025222 (2016).
49. Li, Q., Gong, Z., Li, Y., Liu, H., Feng, L., Liu, S., and Yun, F.: Electro-optical properties of low-temperature growth indium-tin-oxide nanowires using polystyrene spheres as catalyst. Nanoscale Res. Lett. 11, 131 (2016).
50. Wang, L., Ma, J., Liu, Z., Yi, X., Zhu, H., and Wang, G.: In situ fabrication of bendable microscale hexagonal pyramids array vertical light emitting diodes with graphene as stretchable electrical interconnects. ACS Photonics 1, 421429 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Li supplementary material
Fig. S1-S2

 Word (1.3 MB)
1.3 MB
UNKNOWN
Supplementary materials

Li supplementary material
Figure 3

 Unknown (1.1 MB)
1.1 MB
UNKNOWN
Supplementary materials

Li supplementary material
Figure 2

 Unknown (1.5 MB)
1.5 MB
UNKNOWN
Supplementary materials

Li supplementary material
Figure 1

 Unknown (1.4 MB)
1.4 MB

Metrics

Full text views

Total number of HTML views: 10
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 260 *
Loading metrics...

* Views captured on Cambridge Core between 3rd April 2017 - 25th April 2018. This data will be updated every 24 hours.