Skip to main content
    • Aa
    • Aa

Correction factor for contact area in nanoindentation measurements

  • Michel Troyon (a1) and Liye Huang (a1)

In the relationship between unloading contact stiffness, elastic modulus, and contact area, which is the fundamental basic equation for nanoindentation analysis, a multiplicative correction factor is generally needed. Sometimes this correction factor is called γ to take into account the elastic radial inward displacements, and sometimes it is called β to correct for the fact that the indenter shape is not a perfect cone. In reality, these two effects simultaneously coexist and thus it is proposed that this correction factor is α = βγ. From nanoindentation data measured on three materials of different elastic moduli with a sharp Berkovich indenter and a worn one, the tip of which was blunt, it is demonstrated that the correction factor α does not have a constant value for a given material and indenter type but depends on the indenter tip rounding and also on the deformation of the indenter during indentation. It seems that α increases with the tip radius and also with the elastic modulus of the measured materials.

Corresponding author
a)Address all correspondence to this author. e-mail:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.