Skip to main content

A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition

  • Fatin Bazilah Fauzi (a1), Edhuan Ismail (a1), Mohd Hanafi Ani (a1), Syed Noh Syed Abu Bakar (a2), Mohd Ambri Mohamed (a3), Burhanuddin Yeop Majlis (a3), Muhamad Faiz Md Din (a4) and Mohd Asyadi Azam Mohd Abid (a5)...

Chemical vapor deposition (CVD) of graphene has attracted high interest in the electronics industry due to its potential scalability for large-scale production. However, producing a homogeneous thin-film graphene with minimal defects remains a challenge. Studies of processing parameters, such as gas precursors, flow rates, pressures, temperatures, and substrate types, focus on improving the chemical aspect of the deposition. Despite the many reports on such parameters, studies on fluid dynamic aspects also need to be considered since they are crucial factors in scaling up the system for homogenous deposition. Once the deposition kinetics is thoroughly understood, the next vital step is fluid dynamics optimization to design a large-scale system that could deliver the gas uniformly and ensure maximum deposition rate with the desired property. In this review, the influence of fluid dynamics in graphene CVD process was highlighted. The basics and importance of CVD fluid dynamics was introduced. It is understood that the fluid dynamics of gases can be controlled in two ways: via reactor modification and gas composition. This paper begins first with discussions on horizontal tubular reactor modifications. This is followed by mechanical properties of the reactant gasses especially in terms of dimensionless Reynolds number which provides information on gas flow regime for graphene CVD process at atmospheric pressure. Data from the previous literature provide the Reynolds number for various gas compositions and its relation to graphene quality. It has been revealed that hydrogen has a major influence on the fluid dynamic conditions within the CVD, hence affecting the quality of the graphene produced. Focusing on atmospheric pressure CVD, suggestions for up-scaling into larger CVD reactors while maintaining similar fluid properties were also provided.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Tianyu Liu

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Hide All
1. Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).
2. Zhao, P., Kim, S., Chen, X., Einarsson, E., Wang, M., Song, Y., Wang, H., Chiashi, S., Xiang, R., and Maruyama, S.: Equilibrium chemical vapor deposition growth of bernal-stacked bilayer graphene. ACS Nano 8, 1163111638 (2014).
3. Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., and Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 23962399 (2011).
4. Eversole, W.G.: Synthesis of diamond. U.S. Patent No. 3030188, 1962.
5. Miao, C., Zheng, C., Liang, O., and Xie, Y.: Chemical vapor deposition of graphene. In Physics and Applications of Graphene—Experiments, Mikhailov, S., ed. (InTech, Rijeka, Croatia, 2011); pp. 3754.
6. Azam, M.A., Zulkapli, N.N., Dorah, N., Raja Seman, R.N.A., Ani, M.H., Sirat, M.S., Ismail, E., Fauzi, F.B., Mohamed, M.A., and Majlis, B.Y.: Review—Critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronics and energy storage devices. ECS J. Solid State Sci. Technol. 6, M3035M3048 (2017).
7. Wang, S., Hibino, H., Suzuki, S., and Yamamoto, H.: Atmospheric pressure chemical vapor deposition growth of millimeter-scale single-crystalline graphene on the copper surface with a native oxide layer. Chem. Mater. 28, 48934900 (2016).
8. Suzuki, S., Kiyosumi, K., Nagamori, T., Tanaka, K., and Yoshimura, M.: Low density growth of graphene by air introduction in atmospheric pressure chemical vapor deposition. e-J. Surf. Sci. Nanotechnol. 13, 404409 (2015).
9. Yang, M., Sasaki, S., Suzuki, K., and Miura, H.: Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene. Appl. Surf. Sci. 366, 219226 (2016).
10. Weatherup, R.S., Dlubak, B., and Hofmann, S.: Kinetic control of catalytic CVD for high quality graphene at low temperatures. ACS Nano 6, 999610003 (2012).
11. Addou, R., Dahal, A., Sutter, P., and Batzill, M.: Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100, 21601 (2012).
12. Yamazaki, Y., Wada, M., Kitamura, M., Katagiri, M., Sakuma, N., Saito, T., Isobayashi, A., Suzuki, M., Sakata, A., Kajita, A., and Sakai, T.: Low-temperature graphene growth originating at crystalline facets of catalytic metal. Appl. Phys. Express 5, 25101 (2012).
13. Cushing, G.W., Johánek, V., Navin, J.K., and Harrison, I.: Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C 119, 47594768 (2015).
14. Lu, C-C., Jin, C., Lin, Y-C., Huang, C-R., Suenaga, K., and Chiu, P-W.: Characterization of graphene grown on bulk and thin film nickel. Langmuir 27, 1374813753 (2011).
15. Kanzaki, K., Hibino, H., and Makimoto, T.: Graphene layer formation on polycrystalline nickel grown by chemical vapor deposition. Jpn. J. Appl. Phys. 52, 35103 (2013).
16. Lahiri, J., Miller, T.S., Ross, A.J., Adamska, L., Oleynik, I.I., and Batzill, M.: Graphene growth and stability at nickel surfaces. New J. Phys. 11, 25001 (2011).
17. Odahara, G., Hibino, H., Nakayama, N., Shimbata, T., Oshima, C., Otani, S., Suzuki, M., Yasue, T., and Koshikawa, T.: Macroscopic single-domain graphene growth on polycrystalline nickel surface. Appl. Phys. Express 5, 35501 (2012).
18. Kozlova, J., Niilisk, A., Alles, H., and Sammelselg, V.: Discontinuity and misorientation of graphene grown on nickel foil: Effect of the substrate crystallographic orientation. Carbon 94, 160173 (2015).
19. An, X., Liu, F., Jung, Y.J., and Kar, S.: Large-area synthesis of graphene on palladium and their Raman spectroscopy. J. Phys. Chem. C 116, 1641216420 (2012).
20. Dangwal Pandey, A., Krausert, K., Franz, D., Grånäs, E., Shayduk, R., Müller, P., Keller, T.F., Noei, H., Vonk, V., and Stierle, A.: Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy. J. Appl. Phys. 120, 75304 (2016).
21. Ping, J. and Fuhrer, M.S.: Carbon impurities on graphene synthesized by chemical vapor deposition on platinum. J. Appl. Phys. 116, 44303 (2014).
22. Sun, J., Nam, Y., Lindvall, N., Cole, M.T., Teo, K.B.K., Woo Park, Y., and Yurgens, A.: Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation. Appl. Phys. Lett. 104, 152107 (2014).
23. Nam, J., Kim, D.C., Yun, H., Shin, D.H., Nam, S., Lee, W.K., Hwang, J.Y., Lee, S.W., Weman, H., and Kim, K.S.: Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon 111, 733740 (2017).
24. Choi, J.S., Choi, H., Kim, K-C., Jeong, H.Y., Yu, Y-J., Kim, J.T., Kim, J-S., Shin, J-W., Cho, H., and Choi, C-G.: Facile fabrication of properties-controllable graphene sheet. Sci. Rep. 6, 24525 (2016).
25. Sirat, M.S., Ismail, E., Purwanto, H., Mohd Abid, M.A.A., and Ani, M.H.: Growth conditions of graphene grown in chemical vapour deposition (CVD). Sains Malays. 46, 10331038 (2017).
26. Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., Joseph, W., and Lyding, J.W.: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 45474554 (2011).
27. Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.I., and Mizuno, S.: Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50, 5765 (2012).
28. Diaz-Pinto, C., De, D., Hadjiev, V.G., and Peng, H.: Ab-stacked multilayer graphene synthesized via chemical vapor deposition: A characterization by hot carrier transport. ACS Nano 6, 11421148 (2012).
29. Bhaviripudi, S., Jia, X., Dresselhaus, M.S., and Kong, J.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 41284133 (2010).
30. Gao, L., Ren, W., Ma, L.P., Zhao, J., Ma, L.P., Chen, Z., and Cheng, H.M.: Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl. Phys. Lett. 97, 183109 (2010).
31. Wu, B., Geng, D., Guo, Y., Huang, L., Xue, Y., Zheng, J., Chen, J., Yu, G., Liu, Y., Jiang, L., and Hu, W.: Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv. Mater. 23, 35223525 (2011).
32. Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S-S., and Chen, Y.P.: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443449 (2011).
33. Cho, J., Gao, L., Tian, J., Cao, H., Wu, W., Yu, Q., Yitamben, E.N., Fisher, B., Guest, J.R., Chen, Y.P., and Guisinger, N.P.: Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano 5, 36073613 (2011).
34. Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., and Smirnov, S.: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 60696076 (2011).
35. Grosse, K.L., Dorgan, V.E., Estrada, D., Wood, J.D., Vlassiouk, I., Eres, G., Lyding, J.W., King, W.P., and Pop, E.: Direct observation of resistive heating at graphene wrinkles and grain boundaries. Appl. Phys. Lett. 105, 143109 (2014).
36. Vlassiouk, I., Smirnov, S., Regmi, M., Surwade, S.P., Srivastava, N., Feenstra, R., Eres, G., Parish, C., Lavrik, N., Datskos, P., Dai, S., and Fulvio, P.: Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 117, 1891918926 (2013).
37. Chung, T.F., Shen, T., Cao, H., Jauregui, L.A., Wu, W., Yu, Q., Newell, D., and Chen, Y.P.: Synthetic graphene grown by chemical vapor deposition on copper foils. Int. J. Mod. Phys. B 27, 1341002 (2013).
38. Shin, Y.C. and Kong, J.: Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition. Carbon 59, 439447 (2013).
39. Yao, Y., Li, Z., Lin, Z., Moon, K.S., Agar, J., and Wong, C.: Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J. Phys. Chem. C 115, 52325238 (2011).
40. Luo, Z., Lu, Y., Singer, D.W., Berck, M.E., Somers, L.A., Goldsmith, B.R., and Johnson, A.T.C.: Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23, 14411447 (2011).
41. Robertson, A.W. and Warner, J.H.: Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 11, 11821189 (2011).
42. Ogawa, Y., Hu, B., Orofeo, C.M., Tsuji, M., Ikeda, K., Mizuno, S., Hibino, H., and Ago, H.: Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. Lett. 3, 219226 (2012).
43. Orofeo, C.M., Hibino, H., Kawahara, K., Ogawa, Y., Tsuji, M., Ikeda, K.I., Mizuno, S., and Ago, H.: Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50, 21892196 (2012).
44. Nguyen, V.L., Shin, B.G., Duong, D.L., Kim, S.T., Perello, D., Lim, Y.J., Yuan, Q.H., Ding, F., Jeong, H.Y., Shin, H.S., Lee, S.M., Chae, S.H., Vu, Q.A., Lee, S.H., and Lee, Y.H.: Seamless stitching of graphene domains on polished copper(111). Foil. Adv. Mater. 27, 13761382 (2015).
45. Lenski, D.R. and Fuhrer, M.S.: Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J. Appl. Phys. 110, 13720 (2011).
46. Yang, F., Liu, Y., Wu, W., Chen, W., Gao, L., and Sun, J.: A facile method to observe graphene growth on copper foil. Nanotechnology 23, 475705 (2012).
47. Wu, W., Yu, Q., Peng, P., Liu, Z., Bao, J., and Pei, S-S.: Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23, 35603 (2012).
48. Vlassiouk, I., Fulvio, P., Meyer, H., Lavrik, N., Dai, S., Datskos, P., and Smirnov, S.: Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54, 5867 (2013).
49. Mattevi, C., Kim, H., and Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 33243334 (2011).
50. Wang, W., Peng, Q., Dai, Y., Qian, Z., and Liu, S.: Temperature dependence of Raman spectra of graphene on copper foil substrate. J. Mater. Sci. Mater. Electron. 27, 38883893 (2016).
51. Lewis, A.M., Derby, B., and Kinloch, I.A.: Influence of gas phase equilibria on the chemical vapor deposition of graphene. ACS Nano 7, 31043117 (2013).
52. Frank, O., Vejpravova, J., Holy, V., Kavan, L., and Kalbac, M.: Interaction between graphene and copper substrate: The role of lattice orientation. Carbon 68, 440451 (2014).
53. Jacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Kumar, D.S., Taguchi, D., Iwamoto, M., Neupane, R., and Varghese, O.K.: Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett. 15, 57025708 (2015).
54. Braeuninger-Weimer, P., Brennan, B., Pollard, A.J., and Hofmann, S.: Understanding and controlling Cu-catalyzed graphene nucleation: The role of impurities, roughness, and oxygen scavenging. Chem. Mater. 28, 89058915 (2016).
55. Ismail, E., Sirat, M.S., Hamid, A.M.A., Othman, R., Abid, M.A.A.M., and Ani, M.H.: Synthesis of large-area few-layer graphene by open-flame deposition. Sains Malays. 46, 10111016 (2017).
56. Memon, N.K., Tse, S.D., Al-sharab, J.F., Yamaguchi, H., Goncalves, A.B., Kear, B.H., Jaluria, Y., and Andrei, E.Y.: Flame synthesis of graphene films in open environments. Carbon 49, 50645070 (2011).
57. Coltrin, M.E., Kee, R.J., and Miller, J.A.: A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. J. Electrochem. Soc. 131, 425434 (1984).
58. Choi, K. and Kim, J-W.: CFD simulation of chemical vapor deposition of silicon carbide in CH3SiCl3–H2 system. Curr. Nanosci. 10, 135137 (2014).
59. Jensen, K.F., Einset, E.O., and Fotiadis, D.I.: Flow phenomena in chemical vapor deposition of thin films. Annu. Rev. Fluid Mech. 23, 197232 (1991).
60. Cavallotti, C. and Masi, M.: Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations. J. Nanosci. Nanotechnol. 11, 80548060 (2011).
61. Musso, S., Porro, S., Rovere, M., Giorcelli, M., and Tagliaferro, A.: Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes. J. Cryst. Growth 310, 477483 (2008).
62. Reuge, N., Bacsa, R., Serp, P., and Caussat, B.: Chemical vapor synthesis of zinc oxide nanoparticles: Experimental and preliminary modeling studies. J. Phys. Chem. C 113, 1984519852 (2009).
63. Li, G., Huang, S-H., and Li, Z.: Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 17, 2283222836 (2015).
64. Ohring, M.: Chemical vapor deposition. In Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, California, 2002); pp. 277355.
65. Ritala, M., Niinisto, J., Krumdieck, S., Chalker, P., Aspinall, H., Pemble, M.E., Gladfelter, W.L., Leese, B., Fischer, R.A., Parala, H., Kanjolia, R., Dupuis, R.D., Alexandrov, S.E., Irvine, S.J.C., Palgrave, R., Parkin, I.P., Jones, A.C., and Hitchman, M.L.: Overview of Chemical Vapour Deposition. In Chemical Vapour Deposition, Jones, A.C. and Hitchman, M.L., eds. (Royal Society of Chemistry, Cambridge, United Kingdom, 2008), pp. 136.
66. Dirkx, R.R., Spear, K.E.: A morphological study of silicon borides prepared by CVD. In Emergent Process Methods for High-Technology Ceramics, Vol. 17, Davis, R.F., Palmour, H. III, and Porter, R.L., eds. (Springer US, Boston, MA, 1984); pp. 359369.
67. Holstein, W.L.: Design and modeling of chemical vapor deposition reactors. Prog. Cryst. Growth Char. 24, 111211 (1992).
68. Kuczmarski, M.A.: Dimensionless numbers expressed in terms of common CVD process parameters. J. Wide Bandgap Mater. 7, 192212 (2000).
69. Thiart, J.J., Hlavacek, V., and Viljoen, H.J.: Simulation of the growth of CVD films. Chem. Eng. Sci. 50, 34933497 (1995).
70. Cengel, Y.A. and Cimbala, J.M.: Properties of fluids. In Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, Singapore, 2014); pp. 3773.
71. Bloem, J.: Nucleation and growth of silicon by CVD. J. Cryst. Growth 50, 581604 (1980).
72. Manke, C.W.: Analysis of transport processes in vertical cylinder epitaxy reactors. J. Electrochem. Soc. 124, 561569 (1977).
73. Ban, V.S.: Chemical processes in vapor deposition of silicon. J. Electrochem. Soc. 122, 1389 (1975).
74. Asafa, T.B., Tabet, N., and Said, S.A.M.: Taguchi method–ANN integration for predictive model of intrinsic stress in hydrogenated amorphous silicon film deposited by plasma enhanced chemical vapour deposition. Neurocomputing 106, 8694 (2013).
75. Chen, Q.-S., Prasad, V., Zhang, H., and Dudley, M.: Silicon Carbide Crystals — Part II: Process Physics and Modeling. In Crystal Growth Technology, 1st ed., Byrappa, K., Ohachi, T., Michaeli, W., Warlimont, H., and Weber, E., eds. (William Andrew Publishing, Norwich, New York, 2003), pp. 233269.
76. Giling, L.J.: Gas flow patterns in horizontal epitaxial reactor cells observed by interference holography. J. Electrochem. Soc. 129, 634 (1982).
77. Woods, V., Born, H., Strassburg, M., and Dietz, N.: Real time optical characterization of gas flow dynamics in high-pressure chemical vapor deposition. J. Vac. Sci. Technol., A 22, 1596 (2004).
78. Wang, C., Chen, W., Han, C., Wang, G., Tang, B., Tang, C., Wang, Y., Zou, W., Chen, W., Zhang, X-A., Qin, S., Chang, S., and Wang, L.: Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci. Rep. 4, 4537 (2015).
79. Song, Y., Pan, D., Cheng, Y., Wang, P., Zhao, P., and Wang, H.: Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition. Carbon 95, 10271032 (2015).
80. Chen, C-C., Kuo, C-J., Liao, C-D., Chang, C-F., Tseng, C-A., Liu, C-R., and Chen, Y-T.: Growth of large-area graphene single crystals in confined reaction space with diffusion-driven chemical vapor deposition. Chem. Mater. 27, 62496258 (2015).
81. Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., and Ruoff, R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 28162819 (2011).
82. Hesjedal, T.: Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 98, 20112014 (2011).
83. Rahimi, S., Tao, L., Chowdhury, S.F., Park, S., Jouvray, A., Buttress, S., Rupesinghe, N., Teo, K., and Akinwande, D.: Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8, 1047110479 (2014).
84. Hanley, H.J.M., Intemann, H., and Mccarty, R.D.: The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. J. Res. Natl. Inst. Stan. 74A, 3 (1969).
85. Hanley, H.J.M., Intemann, H., and Mccarty, R.D.: The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. Measurements 74, 331353 (1969).
86. Coker, A.K.: Physical properties of liquids and gases. In Ludwig’s Applied Process Design for Chemical and Petrochemical Plants (Elsevier, Boston, Massachusetts, 2007); pp. 103132.
87. Themelis, N.: Transport and Chemical Rate Phenomena (Gordon and Breach, Basel, Switzerland, 1995).
88. Zhang, J., Hu, P., Wang, X., Wang, Z., Liu, D., Yang, B., and Cao, W.: CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J. Mater. Chem. 22, 1828318290 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2018 - 22nd March 2018. This data will be updated every 24 hours.