Skip to main content
    • Aa
    • Aa

Critical shell thickness and emission enhancement of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles

  • Li Peng Qian, Du Yuan, Guang Shun Yi (a1) and Gan Moog Chow (a1)

Amorphous silica shells, used for functionalization of inorganic nanoparticles in bioapplications, were coated on chemically synthesized NaYF4:Yb,Er upconversion fluorescent nanoparticles via a reverse microemulsion method by using dual surfactants of polyoxyethylene (5) nonylphenylether and 1-hexanol, and tetraethyl orthosilicate as precursor. NaYF4:Yb,Er nanoparticles were equiaxed with a particle size of 11.1 ± 1.3 nm. The thickness of silica shell was ∼8 nm. NaYF4:Yb,Er/silica core/shell nanoparticles were well dispersed in solvents such as ethanol and deionized water. The emission intensities of NaYF4:Yb,Er/silica core/shell nanoparticles remained the same as that of uncoated nanoparticles after surface functionalization with an amine group using (3-aminopropyl)-trimethoxysilan. Silica, although providing a good barrier to the nonradiative relaxation between the upconversion nanoparticles and the environments, did not enhance the emission intensity of upconversion nanoparticles. To increase the emission intensity of NaYF4:Yb,Er/silica core/shell nanoparticles, an undoped NaYF4 shell (∼3-nm thick) was deposited on the upconversion nanoparticles before the silica coating. The total emission intensity of NaYF4:Yb,Er/NaYF4/silica core/shell/shell nanoparticles increased by 15 times compared to that without the intermediate NaYF4 shell. The critical shell thickness of NaYF4 was ∼3 nm, beyond which no further emission intensity enhancement was observed.

Corresponding author
b) Address all correspondence to this author. e-mail:
Hide All
38. R.C. Powell : Physics of Solid-State Laser Materials (Springer, New York, 1998).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 171 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.