Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T13:22:14.688Z Has data issue: false hasContentIssue false

Crystalline structure and dielectric behavior of (Ce,Ba)TiO3 ceramics

Published online by Cambridge University Press:  31 January 2011

Zhi Jing
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, 3810 Aveiro, Portugal
Zhi Yu
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, 3810 Aveiro, Portugal
Chen Ang*
Affiliation:
Department of Physics, The University of Akron, Akron, Ohio 44325, and Department of Physics, Zhejiang University, Hang Zhou, 311027, China
*
a) Address all correspondence to this author. e-mail: angchen@physics.uakron.edu
Get access

Abstract

In this work, (Ba1−xCex)Ti1−x/4(VTi)x/4O3 ceramics with x = 0.02, 0.04, 0.06, and 0.08 (VTi denotes titanium vacancies) were synthesized by the mixed-oxide method. The results of x-ray diffraction analysis and scanning electron microscopy show that all the samples are monophasic. The crystalline structure can be indexed as tetragonal for the samples with x ≤ 0.06, but as cubic for x = 0.08. Three phase transitions were observed in the temperature dependence of the dielectric permittivity, similar to those observed in pure BaTiO3, and the three phase transition temperatures (Tc, T1, and T2) shifted to lower temperatures with the rates of −18, −12, and −7 K per molar percentage of Ce3+, respectively. This is quite different from that observed in BaTiO3 with Ce substitution at the Ti-site, in which Tc shifted to a lower temperature, and T1 and T2 to higher temperatures. The permittivity maximum increased with increasing Ce content, which is mainly attributed to an increase in the grain size.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arlt, G., Hennings, D., and G. de With, J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
2.Lin, J.N. and Wu, T.B., J. Appl. Phys. 68, 985 (1990).CrossRefGoogle Scholar
3.Hennings, D. and Schnell, A., J. Am. Ceram. Soc. 65, 539 (1982).CrossRefGoogle Scholar
4.Shannon, R.D., Acta. Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
5.Makovec, D., Samardaija, Z., and Kolar, D., in Third Euro-Ceramics, edited by Duran, P. and Fernandez, J.F. (Faenca Editrice Iberica, Castellon de la plana, Spain, 1993), Vol. 1, p. 961.Google Scholar
6.Chen, A., Zhi, Y., Zhi, J., Vilarinho, P.M., and Baptista, J.L., J. Eur. Ceram. Soc. 17, 1217 (1997).CrossRefGoogle Scholar
7.Zhi, Y., Chen, A., Zhi, J., Vilarinho, P.M., and Baptista, J.L., J. Phys.: CM, 9, 3081 (1997).Google Scholar
8.Chen, A., Zhi, Y., and Zhi, J., Phys. Rev. B 61, 957 (2000).Google Scholar
9.Zhi, J., Zhi, Y., and Chen, A., J. Mater. Sci. (in press).Google Scholar
10.Makovec, D. and Kolar, D., Electroceramic V, Book 1, edited by Baptista, J.L., Vilarinho, P.M., and , Lablansia (Aveiro, Portugal, 1996), pp. 557560.Google Scholar
11.Hennings, D.F.K., Schreinemacher, B., and Schreinemacher, H., J. Eur. Ceram. Soc. 13, 81 (1994).CrossRefGoogle Scholar
12.Park, Y. and Kim, Y., J. Mater. Res. 10, 2770 (1995).CrossRefGoogle Scholar
13.Park, Y. and Kim, Y., Mater. Res. Bull. 31, 1479 (1996).CrossRefGoogle Scholar
14.Makovec, D., Samardaija, Z., and Kolar, D., J. Solid State Chem. 123, 30 (1996).CrossRefGoogle Scholar
15.Makovec, D., Samardaija, Z., and Kolar, D., J. Am. Ceram. Soc. 80, 45 (1997).CrossRefGoogle Scholar
16.Park, Y. and Kim, H., J. Am. Ceram. Soc. 80, 106 (1997).CrossRefGoogle Scholar
17.Hwang, J.H. and Han, Y.H., Jpn. J. Appl. Phys. 39, 2701 (2000).CrossRefGoogle Scholar
18.Hwang, J.H. and Han, Y.H., J. Am. Ceram. Soc. 84, 1750 (2001).CrossRefGoogle Scholar
19.Lines, M.E. and Glass, A.M., Principle and Application of Ferroelectrics and Related Materials (Oxford University Press, London, U.K., 1977).Google Scholar
20.Tsur, Y., Dunbar, T.D., and Randall, C.A., J. Electroceram. 7, 25 (2001).CrossRefGoogle Scholar
21.Chen, A., Zhi, Y., Vilarinho, P.M., and Baptista, J.L., Phys. Rev. B 57, 7403 (1998).Google Scholar
22.Tavernor, A.W. and Thomas, N.W., J. Eur. Ceram. Soc. 13, 121 (1994).CrossRefGoogle Scholar
23.Uchino, K. and Nomura, S., Ferroelectrics Lett. 44, 55 (1982).CrossRefGoogle Scholar
24.Kinoshita, K. and Yamaji, A., J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
25.Hennings, D., Int. J. High Technol. Ceram. 3, 91 (1987).CrossRefGoogle Scholar
26.Zhi, J., Chen, A., Zhi, Y., Vilarinho, P.M., and Baptista, J.L., J. Appl. Phys. 84, 983 (1998); J. Am. Ceram. Soc. 82, 1345 (1999).Google Scholar
27.Westphal, V., Kleemann, W., and Glinchuk, M.D., Phys. Rev. Lett. 68, 847 (1992); W. Kleemann, Int. J. Mod. Phys. 7, 2469 (1993).CrossRefGoogle Scholar
28.Hippel, A. Von, Dielectrics and Waves (The M.I.T. Press, Cambridge, MA, 1954).Google Scholar
29.Halperin, B.I. and Varma, C.M., Phys. Rev. B 14, 4030 (1976).CrossRefGoogle Scholar
30.Lawrie, I.D., Millev, Y.T., and Uzunov, D.I., J. Phys. A 20, 1599 (1987).CrossRefGoogle Scholar