Skip to main content
×
Home
    • Aa
    • Aa

Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

  • Oomman K. Varghese (a1), Dawei Gong (a2), Maggie Paulose (a2), Craig A. Grimes (a2) and Elizabeth C. Dickey (a1)...
Abstract

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ecdlo@psu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. D. Grosso and G.J. de A.A.S. Illia , Adv. Mater. 13, 1085 (2001).

3. D.M. Antonelli , Microporous Mesoporous Mater. 30, 315 (1999).

4. A. Mozalev , S. Magaino , and H. Imai , Electrochim. Acta 46, 2825 (2001).

5. W. Deng , P. Bodart , M. Pruski , and B.H. Shanks , Microporous Mesoporous Mater. 52, 169 (2002).

7. V.I. Parvulescu , H. Bonnemann , V. Parvulescu , U. Endruschat , A. Rufinska , Ch.W. Lehmann , B. Tesche , and G. Poncelet , Appl. Catal., A 214, 273 (2001).

8. M.S. Wong , D.M. Antonelli , and J.Y. Ying , Nanostruct. Mater. 9, 165 (1997).

9. T. Fujii , T. Yano , K. Nakamura , and O. Miyawaki , J. Membr. Sci. 187, 171 (2001).

10. D. Zhao , J. Feng , Q. Huo , N. Melosh , G.H. Fredrickson , B.F. Chmelka , and G.D. Stucky , Science 279, 548 (1998).

11. M. Harada and M. Adachi , Adv. Mater. 12, 839 (2000).

12. J. Zou , L. Pu , X. Bao , and D. Feng , Appl. Phys. Lett. 80, 1079 (2002).

13. L. Pu , X. Bao , J. Zou , and D. Feng , Angew. Chem. 113, 1538 (2001).

16. A. Michailowski , D. Aimaawlawi , G. Cheng , and M. Moskovits , Chem. Phys. Lett. 349, 1 (2001).

17. P. Hoyer , Langmuir 12, 1411 (1996).

18. T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , and K. Niihara , Langmuir 14, 3160 (1998).

22. H. Imai , Y. Takei , K. Shimizu , M. Matsuda , and H. Hirashima , J. Mater. Chem. 9, 2971 (1999).

23. T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , and K. Niihara , Adv. Mater. 11, 1307 (1999).

24. G.H. Du , Q. Chen , R.C. Che , Z.Y. Yuan , L-M. Peng , Appl. Phys. Lett. 79, 3702 (2001).

25. Q. Fan , B. McQuillin , D.D.C. Bradley , S. Whitelegg , A.B. Seddon , Chem. Phys. Lett. 347, 325 (2001).

26. N-G. Park , J. van de Lagemaat , and A.J. Frank , J. Phys. Chem. B 104, 8989 (2000).

28. Z. Ma , Y. Yue , X. Deng , and Z. Gao , J. Mol. Catal., A 178, 97 (2002).

29. X-S. Ye , Z-G. Xiao , D-S. Lin , S-Y. Huang , and Y-H. Man , Mater. Sci. and Eng., B 74, 133 (2000).

30. L. Gao , Q. Li , Z. Song , and J. Wang , Sens. Actuators, B 71, 179 (2000).

31. A. Rothschile , F. Edelman , Y. Komem , and F. Cosandey , Sens. Actuators, B 67, 282 (2000).

33. K-N.P. Kumar , K. Keizer , A.J. Burggraaf , T. Okubo , and H. Nagamoto , J. Mater. Chem. 3, 1151 (1993).

34. Y. Ohya , H. Saiki , T. Tanaka , and Y. Takahashi , J. Am. Ceram. Soc. 79, 825 (1996).

36. J.A. Varela , O.J. Whittemore , and E. Longo , Ceram. Int. 16, 177 (1990).

37. O.J. Whittemore and J.J. Sipe , Powder Technol. 9, 159 (1974).

38. K-N.P. Kumar , K. Keizer , A.J. Burggraaf , T. Okubo , H. Nagamoto , and S. Morooka , Nature 358, 48 (1992).

40. X-Z. Ding and X-H. Liu , J. Mater. Sci. Lett. 15, 1392 (1996).

43. Y. Iida and S. Ozaki , J. Am. Ceram. Soc. 44, 120 (1961).

45. H. Zhang and J.F. Banfield , J. Phys. Chem. B 104, 3481 (2000).

47. R.D. Shannon , J. Appl. Phys. 35, 3414 (1965).

48. F. Gruy and M. Pijolat , J. Am. Ceram. Soc. 75, 657 (1992).

49. J-L. Hebrard , P. Nortier , M. Pijolat , and M. Saustelle , J. Am. Ceram. Soc. 73, 79 (1990).

50. H. Imai , H. Morimoto , A. Tominaga , and H. Hirashima , J. Sol-Gel Sci. Technol. 10, 45 (1997).

52. N.P. Bansal , R.H. Doremus , A.J. Bruce , and C.T. Moynihan , J. Am. Ceram. Soc. 66 (1983) 233.

53. H. Zhang and J.F. Banfield , J. Mater. Res. 15, 437 (2000).

55. K-N.P. Kumar , J. Tranto , B.N. Nair , J. Kumar , J.W. Høj , and J.E. Engell , Mater. Res. Bull. 29, 551 (1994).

57. J.A. Moulijn , A.E. van Diepen , and F. Kapteijn , Appl. Catal., A 212, 3 (2001).

61. R.D. Shannon and J.A. Pask , J. Am. Ceram. Soc. 48, 391 (1965).

62. P.I. Gouma , P.K. Dutta , and M.J. Mills , Nanostruct. Mater. 11, 1231 (1999).

63. P.I. Gouma and M.J. Mills , J. Am. Ceram. Soc. 84, 619 (2001).

64. H. Zhang and J.F. Banfield , J. Mater. Chem. 8, 2073 (1998).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 183 *
Loading metrics...

Abstract views

Total abstract views: 448 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2017. This data will be updated every 24 hours.