Published online by Cambridge University Press: 31 January 2011
Crystallization kinetics and phase transformation characteristics of μ- or α-cordierite seeded gels were compared with those of unseeded monophasic gels. The α-cordierite seeding modified the sequence of phase transformation and lowered the temperature of α-cordierite formation from amorphous gel by ∽150 °C. The μ-seeded transformation was characterized by 3-dimensional isotropic growth with essentially zero activation energy for the nucleation step. Combining the nucleation theory with the transition state theory, we have separately estimated the activation free energy of nucleation and that of growth step in the crystallization of amorphous cordierite gel. The estimated activation free energies showed that the crystallization of unseeded cordierite gel is mainly growth controlled.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.