Skip to main content
×
Home

Crystallization properties of IrQ(ppy)2 organometallic complex films

  • Silviu Polosan (a1), Constantin Claudiu Ciobotaru (a1), Iulia Corina Ciobotaru (a1) and Taiju Tsuboi (a2)
Abstract
Abstract

Comparative studies between doped conducting polymers and electrochemical deposited organometallic compounds reveals the interplay between crystalline-amorphous phases with significant contributions to the internal quantum efficiency in the OLED devices. The coexistence of the amorphous and crystalline phase in the electrodeposited film is revealed by the minor micro-crystal products which are present in the amorphous phase in thin films, while the many micro-crystals are randomly distributed in the thick films. Concerning the doped conducting polymers, the level of doping induces crystalline effects as a result of the π–π stacking between molecules, due to the Forester energy transfer processes in which the transfer rate is increased with decreasing of the distances between neighboring molecules. The crystallization processes change the emission properties of the active layers both for the luminance level and all over color, ranging from yellow to red in the case of IrQ(ppy)2 compounds.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: silv@infim.ro
Footnotes
Hide All

Contributing Editor: Tao Xie

Footnotes
References
Hide All
1. Tang C.W. and Van Slyke S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).
2. Wang G., Wong T.K.S., and Hu X.: Influence of thickness of electrochemically deposited hole-transport film on electroluminescent properties. Appl. Phys. A 71, 117 (2000).
3. Lincot D.: Electrodeposition of semiconductors. Thin Solid Films 487, 40 (2005).
4. Kathalingam A., Kim M.R., Chae Y.S., Rhee J.K., and Mahalingam T.: Studies on electrochemically deposited ZnO thin films. J. Korean Phys. Soc. 55, 2476 (2009).
5. Damlin P., Gstergard T., Ivaska A., and Stubb H.: Light-emitting diodes of poly(p-phenylene vinylene) films electrochemically polymerized by cyclic voltammetry on IT0. Synth. Met. 102, 947 (1999).
6. Chang W., Whang W., and Lin P.: Characteristics of an electropolymerized PPV and its light-emitting diode. Polymer 37, 1513 (1996).
7. Li M., Li M., Tang S., Shen F., Liu M., Li F., Lu P., Lu D., Hanif M., and Ma Y.: The counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films. J. Electrochem. Soc. 155, H287 (2008).
8. Ostergard T., Kvarnstrom C., Stubb H., and Ivaska A.: Electrochemically prepared light-emitting diodes of poly(para-phenylene). Thin Solid Films 311, 58 (1997).
9. Zhu Y., Gu C., Tang S., Fei T., Gu X., Wang H., Wang Z., Wang F., Lu D., and Ma Y.: A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes. J. Mater. Chem. 19, 3941 (2009).
10. Li M., Tang S., Shen F., Liu M., Wang H., Lu P., Hanif M., and Ma Y.: Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes. Semicond. Sci. Technol. 22, 855 (2007).
11. Li M., Tang S., Shen F., Liu M., Xie W., Xia H., Liu L., Tian L., Xie Z., Lu P., Hanif M., Lu D., Cheng G., and Ma Y.: Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem. Commun. 32, 3393 (2006).
12. Li M., Tang S., Shen F., Xie W., Xia H., Liu L., Tian L., Xie Z., Hanif M., Lu D., Cheng G., and Ma Y.: Electrochemically deposited organic luminescent films: The effects of deposition parameters on morphologies and luminescent efficiency of films. J. Phys. Chem. B 110, 17784 (2006).
13. Gu C., Tang S., Yang B., Liu S., Wang H., Yang S., Hanif M., Lu D., Shen F., and Ma Y.: Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochim. Acta 54, 7006 (2009).
14. Liu C., Luo H., Shi G., Yang J., Chi Z., and Ma Y.: Luminescent network film deposited electrochemically from a carbazole functionalized AIE molecule and its application for OLEDs. J. Mater. Chem. C 3, 3752 (2015).
15. Sun C.J., Wu Y., Xu Z., Hu B., Bai J., Wang J.P., and Shen J.: Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles. Appl. Phys. Lett. 90, 232110 (2007).
16. Ciobotaru I.C., Polosan S., and Ciobotaru C.C.: Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis. J. Lumin. 145, 259 (2014).
17. Garnier F.: Thin film transistors based on organic conjugated semiconductors. Chem. Phys. 282, 253 (1998).
18. Katz H.E., Dodabalapur A., and Bao Z.: Oligo- and Polythiophene-based Field-effect Transistors, Fichou D., ed. (Wiley-VCH, Weinheim, 1998).
19. Hotta S. and Waragai K.: Organic molecular solids as thin film transistor semiconductors. Adv. Mater. 5, 896 (1993).
20. Nelson S.F., Lin Y-Y., Gundlach D.J., and Jackson T.N.: Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).
21. Horowitz G., Hajlaoui R., Fichou D., and El Kassmi A.: Field-effect transistors based on short organic molecules. J. Appl. Phys. 85, 3202 (1999).
22. Hajlaoui R., Fichou D., Horowitz G., Nessakh B., Constant M., and Garnier F.: Organic transistors using α-octithiophene and α, ω-dihexyl-α-octithiophene: Influence of oligomer length versus molecular ordering on mobility. Adv. Mater. 9, 557 (1997).
23. Polosan S., Ciobotaru I.C., and Tsuboi T.: Absorption, phosphorescence and Raman spectra of IrQ(ppy)2 organometallic compound. Mater. Chem. Phys. 162, 822830 (2015).
24. Yi C., Yang C., Liu J., Xu M., Wang J., Cao Q., and Gao X.: Red to near-infrared electrophosphorescence from an iridium complex coordinated with 2-phenylpyridine and 8-hydroxyquinoline. Inorg. Chim. Acta 360, 3493 (2007).
25. Kappaun S., Eder S., Sax S., Mereiter K., and Slugovc C.: Organoiridium quinolinolate complexes: Synthesis, structures, thermal stabilities and photophysical properties. Eur. J. Inorg. Chem. 26, 4207 (2007).
26. Rivnay J., Mannsfeld S.C.B., Miller C.E., Salleo A., and Toney M.F.: Determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).
27. Ding J., Gao J., Fu Q., Cheng Y., Ma D., and Wang L.: Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands. Synth. Met. 155, 539 (2005).
28. You Y. and Park S.Y.: Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: Facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J. Am. Chem. Soc. 127, 12438 (2005).
29. Holmes R.J., Forrest S.R., Tung Y.J., Kwong R.C., Brown J.J., Garon S., and Thompson M.E.: Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl. Phys. Lett. 82(15), 2422 (2003).
30. Dale R.E., Eisinger J., and Blumberg W.E.: The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161 (1979).
31. Mersol J.V., Wang H., Gafni A., and Steel D.G.: Consideration of dipole orientation angles yields accurate rate equations for energy transfer in the rapid diffusion limit. Biophys. J. 61, 1647 (1992).
32. Pommerehne J., Vestweber H., Guss W., Mahrt R.F., Bassler H., Proseh M., and Daub J.: Efficient two layer leds on a polymer blend basis. Adv. Mater. 7(6), 551 (1995).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 140 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2017 - 13th December 2017. This data will be updated every 24 hours.