Skip to main content

Data-driven understanding of collective carbon nanotube growth by in situ characterization and nanoscale metrology

  • Mostafa Bedewy (a1)

Aligned carbon nanotubes (CNTs) possess great potential for transforming the fabrication of advanced interfacial materials for energy and mass transport as well as for structural composites. Realizing this potential, however, requires building a deeper understanding and exercising greater control on the atomic scale physicochemical processes underlying the bottom-up synthesis and self-organization of CNTs. Hence, in situ nanoscale metrology and characterization techniques were developed for interrogating CNTs as they grow, interact, and self-assemble. This article presents an overview of recent research on characterization of CNT growth by chemical vapor deposition (CVD), organized into three categories based on the growth stage, for which each technique provides information: (I) catalyst preparation and treatment, (II) catalytic activation and CNT nucleation, and (III) CNT growth and termination. Combining all three categories together provides insights into building the process–structure relationship, and paves the way for producing tailored CNT structures having desired properties for target applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Data-driven understanding of collective carbon nanotube growth by in situ characterization and nanoscale metrology
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Data-driven understanding of collective carbon nanotube growth by in situ characterization and nanoscale metrology
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Data-driven understanding of collective carbon nanotube growth by in situ characterization and nanoscale metrology
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail:,
Hide All
1. Baughman R.H., Zakhidov A.A., and de Heer W.A.: Carbon nanotubes—The route toward applications. Science 297(5582), 787 (2002).
2. De Volder M.F.L., Tawfick S.H., Baughman R.H., and Hart A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535 (2013).
3. Cassell A.M., Raymakers J.A., Kong J., and Dai H.: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484 (1999).
4. Hata K., Futaba D.N., Mizuno K., Namai T., Yumura M., and Iijima S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362 (2004).
5. Bedewy M., Meshot E.R., Guo H., Verploegen E.A., Lu W., and Hart A.J.: Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113(48), 20576 (2009).
6. Meshot E., Bedewy M., Lyons K., Woll A., Juggernauth K., Tawfick S., and Hart A.: Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation. Nanoscale 2(6), 896 (2010).
7. Bedewy M., Meshot E.R., Reinker M.J., and Hart A.J.: Population growth dynamics of carbon nanotubes. ACS Nano 5(11), 8974 (2011).
8. Bedewy M., Meshot E.R., and Hart A.J.: Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth. Carbon 50(14), 5106 (2012).
9. Puretzky A.A., Geohegan D.B., Jesse S., Ivanov I.N., and Eres G.: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A: Mater. Sci. Process. 81(2), 223 (2005).
10. Futaba D.N., Hata K., Namai T., Yamada T., Mizuno K., Hayamizu Y., Yumura M., and Iijima S.: 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J. Phys. Chem. B 110(15), 8035 (2006).
11. Noda S., Hasegawa K., Sugime H., Kakehi K., Zhang Z., Maruyama S., and Yukio Y.: Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys. 46(5L), L399 (2007).
12. Einarsson E., Murakami Y., Kadowaki M., and Maruyama S.: Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46(6), 923 (2008).
13. Wirth C.T., Zhang C., Zhong G., Hofmann S., and Robertson J.: Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3(11), 3560 (2009).
14. Vinten P., Lefebvre J., and Finnie P.: Kinetic critical temperature and optimized chemical vapor deposition growth of carbon nanotubes. Chem. Phys. Lett. 469(4–6), 293 (2009).
15. Amama P.B., Pint C.L., Kim S.M., McJilton L., Eyink K.G., Stach E.A., Hauge R.H., and Maruyama B.: Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 4(2), 895 (2010).
16. Amama P.B., Pint C.L., McJilton L., Kim S.M., Stach E.A., Murray P.T., Hauge R.H., and Maruyama B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9(1), 44 (2009).
17. Pathak S., Mohan N., Decolvenaere E., Needleman A., Bedewy M., Hart A.J., and Greer J.R.: Local relative density modulates failure and strength in vertically aligned carbon nanotubes. ACS Nano 7(10), 8593 (2013).
18. Bedewy M. and Hart A.J.: Mechanical coupling limits the density and quality of self-organized carbon nanotube growth. Nanoscale 5(7), 2928 (2013).
19. Thompson C.V.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399 (2012).
20. Teo K.B.K., Chhowalla M., Amaratunga G.A.J., Milne W.I., Hasko D.G., Pirio G., Legagneux P., Wyczisk F., and Pribat D.: Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534 (2001).
21. Li Y., Liu J., Wang Y., and Wang Z.L.: Preparation of monodispersed Fe−Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008 (2001).
22. Polsen E.S., Bedewy M., and Hart A.J.: Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles. Small 9(15), 2564 (2013).
23. Hinderling C., Keles Y., Stöckli T., Knapp H.F., de los Arcos T., Oelhafen P., Korczagin I., Hempenius M.A., Vancso G.J., Pugin R., and Heinzelmann H.: Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 16(11), 876 (2004).
24. Baker R.T.K., Barber M.A., Harris P.S., Feates F.S., and Waite R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51 (1972).
25. Harutyunyan A.R., Kuznetsov O.A., Brooks C.J., Mora E., and Chen G.: Thermodynamics behind carbon nanotube growth via endothermic catalytic decomposition reaction. ACS Nano 3(2), 379 (2009).
26. Bachilo S.M., Balzano L., Herrera J.E., Pompeo F., Resasco D.E., and Weisman R.B.: Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125(37), 11186 (2003).
27. de los Arcos T., Gunnar Garnier M., Oelhafen P., Mathys D., Won Seo J., Domingo C., Vicente García-Ramos J., and Sánchez-Cortés S.: Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 42(1), 187 (2004).
28. Chiang W-H. and Sankaran R.M.: Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth. Adv. Mater. 20(24), 4857 (2008).
29. Kitiyanan B., Alvarez W.E., Harwell J.H., and Resasco D.E.: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317(3–5), 497 (2000).
30. Wang S., Borisevich A.Y., Rashkeev S.N., Glazoff M.V., Sohlberg K., Pennycook S.J., and Pantelides S.T.: Dopants adsorbed as single atoms prevent degradation of catalysts. Nat. Mater. 3(3), 143 (2004).
31. Shanov V., Gorton A., Yun Y.H., and Schulz M.: Composite catalyst and method for manufacturing carbon nanostructured materials, US Patent Application 2008/095695.
32. Islam A.E., Nikolaev P., Amama P.B., Saber S., Zakharov D., Huffman D., Erford M., Sargent G., Semiatin S.L., Stach E.A., and Maruyama B.: Engineering the activity and lifetime of heterogeneous catalysts for carbon nanotube growth via substrate ion beam bombardment. Nano Lett. 14(9), 4997 (2014).
33. Dai H., Rinzler A.G., Nikolaev P., Thess A., Colbert D.T., and Smalley R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260(3), 471 (1996).
34. Sushumna I. and Ruckenstein E.: Role of physical and chemical interactions in the behavior of supported metal-catalysts—iron on alumina—A case-study. J. Catal. 94(1), 239 (1985).
35. Gohier A., Ewels C.P., Minea T.M., and Djouadi M.A.: Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon 46(10), 1331 (2008).
36. Stadermann M., Sherlock S.P., In J-B., Fornasiero F., Park H.G., Artyukhin A.B., Wang Y., De Yoreo J.J., Grigoropoulos C.P., Bakajin O., Chernov A.A., and Noy A.: Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett. 9(2), 738 (2009).
37. Hasegawa K. and Noda S.: Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth. Appl. Phys. Express 3(4), 045103 (2010).
38. Meshot E.R., Verploegen E., Bedewy M., Tawfick S., Woll A.R., Green K.S., Hromalik M., Koerner L.J., Philipp H.T., Tate M.W., Gruner S.M., and Hart A.J.: High-speed in situ X-ray scattering of carbon nanotube film nucleation and self-organization. ACS Nano 6(6), 5091 (2012).
39. de los Arcos T., Garnier M.G., Seo J.W., Oelhafen P., Thommen V., and Mathys D.: The influence of catalyst chemical state and morphology on carbon nanotube growth. J. Phys. Chem. B 108(23), 7728 (2004).
40. Mattevi C., Wirth C.T., Hofmann S., Blume R., Cantoro M., Ducati C., Cepek C., Knop-Gericke A., Milne S., Castellarin-Cudia C., Dolafi S., Goldoni A., Schloegl R., and Robertson J.: In-situ X-ray photoelectron spectroscopy study of catalyst−support interactions and growth of carbon nanotube forests. J. Phys. Chem. C 112(32), 12207 (2008).
41. Hofmann S., Sharma R., Ducati C., Du G., Mattevi C., Cepek C., Cantoro M., Pisana S., Parvez A., Cervantes-Sodi F., Ferrari A.C., Dunin-Borkowski R., Lizzit S., Petaccia L., Goldoni A., and Robertson J.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7(3), 602 (2007).
42. Hofmann S., Blume R., Wirth C.T., Cantoro M., Sharma R., Ducati C., Hävecker M., Zafeiratos S., Schnoerch P., Oestereich A., Teschner D., Albrecht M., Knop-Gericke A., Schlögl R., and Robertson J.: State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113(5), 1648 (2009).
43. Bedewy M., Viswanath B., Meshot E.R., Zakharov D.N., Stach E.A., and Hart A.J.: Measurement of the dewetting, nucleation, and deactivation kinetics of carbon nanotube population growth by environmental transmission electron microscopy. Chem. Mater. 28(11), 3804 (2016).
44. Sharma R., Moore E., Rez P., and Treacy M.M.J.: Site-specific fabrication of Fe particles for carbon nanotube growth. Nano Lett. 9(2), 689 (2009).
45. Xu Y-Q., Flor E., Schmidt H., Smalley R.E., and Hauge R.H.: Effects of atomic hydrogen and active carbon species in 1 mm vertically aligned single-walled carbon nanotube growth. Appl. Phys. Lett. 89(12), 123116 (2006).
46. Pint C.L., Kim S.M., Stach E.A., and Hauge R.H.: Rapid and scalable reduction of dense surface-supported metal-oxide catalyst with hydrazine vapor. ACS Nano 3(7), 1897 (2009).
47. Landois P., Pinault M., Rouzière S., Porterat D., Mocuta C., Elkaim E., Mayne-L’Hermite M., and Launois P.: In situ time resolved wide angle X-ray diffraction study of nanotube carpet growth: Nature of catalyst particles and progressive nanotube alignment. Carbon 87, 246 (2015).
48. Tessonnier J-P. and Su D.S.: Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem 4(7), 824 (2011).
49. Mazzucco S., Wang Y., Tanase M., Picher M., Li K., Wu Z., Irle S., and Sharma R.: Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation. J. Catal. 319, 54 (2014).
50. Wirth C.T., Bayer B.C., Gamalski A.D., Esconjauregui S., Weatherup R.S., Ducati C., Baehtz C., Robertson J., and Hofmann S.: The phase of iron catalyst nanoparticles during carbon nanotube growth. Chem. Mater. 24(24), 4633 (2012).
51. Lin M., Tan J.P.Y., Boothroyd C., Loh K.P., Tok E.S., and Foo Y.L.: Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 6(3), 449 (2006).
52. Yoshida H., Takeda S., Uchiyama T., Kohno H., and Homma Y.: Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082 (2008).
53. Moseler M., Cervantes-Sodi F., Hofmann S., Csanyi G., and Ferrari A.C.: Dynamic catalyst restructuring during carbon nanotube growth. ACS Nano 4(12), 7587 (2010).
54. Balakrishnan V., Bedewy M., Meshot E.R., Pattinson S.W., Polsen E.S., Laye F., Zakharov D.N., Stach E.A., and Hart A.J.: Real time imaging of self-organization and mechanical competition in carbon nanotube forest growth. ACS Nano (2017). Accepted.
55. Huang Z.P., Xu J.W., Ren Z.F., Wang J.H., Siegal M.P., and Provencio P.N.: Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845 (1998).
56. Fan S., Chapline M.G., Franklin N.R., Tombler T.W., Cassell A.M., and Dai H.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512 (1999).
57. Kong J., Cassell A.M., and Dai H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292(4–6), 567 (1998).
58. Maruyama S., Einarsson E., Murakami Y., and Edamura T.: Growth process of vertically aligned single-walled carbon nanotubes. Chem. Phys. Lett. 403(4–6), 320 (2005).
59. Zheng B., Lu C., Gu G., Makarovski A., Finkelstein G., and Liu J.: Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895 (2002).
60. Zhang Y., Gregoire J.M., van Dover R.B., and Hart A.J.: Ethanol-promoted high-yield growth of few-walled carbon nanotubes. J. Phys. Chem. C 114(14), 6389 (2010).
61. Futaba D.N., Goto J., Yasuda S., Yamada T., Yumura M., and Hata K.: General rules governing the highly efficient growth of carbon nanotubes. Adv. Mater. 21(47), 4811 (2009).
62. Pint C.L., Pheasant S.T., Parra-Vasquez A.N.G., Horton C., Xu Y., and Hauge R.H.: Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113(10), 4125 (2009).
63. Li X., Zhang X., Ci L., Shah R., Wolfe C., Kar S., Talapatra S., and Ajayan P.: Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 19(45), 455609 (2008).
64. Zhu L., Hess D.W., and Wong C-P.: Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics. J. Phys. Chem. B 110(11), 5445 (2006).
65. Vinten P., Marshall P., Lefebvre J., and Finnie P.: Distinct termination morphologies for vertically aligned carbon nanotube forests. Nanotechnology 21(3), 035603 (2010).
66. Meunier V. and Lambin P.: Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes. Carbon 38(11–12), 1729 (2000).
67. Hart A.J., van Laake L., and Slocum A.H.: Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3(5), 772 (2007).
68. Puretzky A.A., Eres G., Rouleau C.M., Ivanov I.N., and Geohegan D.B.: Real-time imaging of vertically aligned carbon nanotube array growth kinetics. Nanotechnology 19(5), 055605 (2008).
69. Kim D-H., Jang H-S., Kim C-D., Cho D-S., Yang H-S., Kang H-D., Min B-K., and Lee H-R.: Dynamic growth rate behavior of a carbon nanotube forest characterized by in situ optical growth monitoring. Nano Lett. 3(6), 863 (2003).
70. Dell’Acqua-Bellavitis L.M., Ballard J.D., Ajayan P.M., and Siegel R.W.: Kinetics for the synthesis reaction of aligned carbon nanotubes: A study based on in situ diffractography. Nano Lett. 4(9), 1613 (2004).
71. Meshot E.R. and Hart A.J.: Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92(11), 113107 (2008).
72. Meshot E.R., Plata D.L., Tawfick S., Zhang Y., Verploegen E.A., and Hart A.J.: Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 3(9), 2477 (2009).
73. Iwasaki T., Zhong G.F., Aikawa T., Yoshida T., and Kawarada H.: Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J. Phys. Chem. B 109(42), 19556 (2005).
74. Patole S.P., Park J.H., Lee T.Y., Lee J.H., Patole A.S., and Yoo J.B.: Growth interruption studies on vertically aligned 2-3 wall carbon nanotubes by water assisted chemical vapor deposition. Appl. Phys. Lett. 93(11), 114101 (2008).
75. Yasuda S., Hiraoka T., Futaba D.N., Yamada T., Yumura M., and Hata K.: Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity. Nano Lett. 9(2), 769 (2009).
76. Valiente A.M., Lopez P.N., Ramos I.R., Ruiz A.G., Li C., and Xin Q.: In situ study of carbon nanotube formation by C2H2 decomposition on an iron-based catalyst. Carbon 38(14), 2003 (2000).
77. Jackson J.J., Puretzky A.A., More K.L., Rouleau C.M., Eres G., and Geohegan D.B.: Pulsed growth of vertically aligned nanotube arrays with variable density. ACS Nano 4(12), 7573 (2010).
78. Geohegan D.B., Puretzky A.A., Jackson J.J., Rouleau C.M., Eres G., and More K.L.: Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays. ACS Nano 5(10), 8311 (2011).
79. Puretzky A.A., Geohegan D.B., Jackson J.J., Pannala S., Eres G., Rouleau C.M., More K.L., Thonnard N., and Readle J.D.: Incremental growth of short SWNT arrays by pulsed chemical vapor deposition. Small 8(10), 1534 (2012).
80. Picher M., Anglaret E., Arenal R., and Jourdain V.: Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett. 9(2), 542 (2009).
81. Chiashi S., Kohno M., Takata Y., and Maruyama S.: Localized synthesis of single-walled carbon nanotubes on silicon substrates by a laser heating catalytic CVD. J. Phys. Conf. Ser. 59, 155158 (2007).
82. Li-Pook-Than A., Lefebvre J., and Finnie P.: Phases of carbon nanotube growth and population evolution from in situ Raman spectroscopy during chemical vapor deposition. J. Phys. Chem. C 114(25), 11018 (2010).
83. Latorre N., Romeo E., Cazana F., Ubieto T., Royo C., Villacampa J.J., and Monzon A.: Carbon nanotube growth by catalytic chemical vapor deposition: A phenomenological kinetic model. J. Phys. Chem. C 114(11), 4773 (2010).
84. Rao R., Liptak D., Cherukuri T., Yakobson B.I., and Maruyama B.: In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 11(3), 213 (2012).
85. Wang B.N., Bennett R.D., Verploegen E., Hart A.J., and Cohen R.E.: Quantitative characterization of the morphology of multiwall carbon nanotube films by small-angle X-ray scattering. J. Phys. Chem. C 111(16), 5859 (2007).
86. Wang H., Xu Z., and Eres G.: Order in vertically aligned carbon nanotube arrays. Appl. Phys. Lett. 88(21), 213111 (2006).
87. Louchev O.A., Laude T., Sato Y., and Kanda H.: Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622 (2003).
88. Wood R.F., Pannala S., Wells J.C., Puretzky A.A., and Geohegan D.B.: Simple model of the interrelation between single- and multiwall carbon nanotube growth rates for the CVD process. Phys. Rev. B: Condens. Matter Mater. Phys. 75(23), 235446 (2007).
89. Wang B.N., Bennett R.D., Verploegen E., Hart A.J., and Cohen R.E.: Characterizing the morphologies of mechanically manipulated multiwall carbon nanotube films by small-angle X-ray scattering. J. Phys. Chem. C 111(48), 17933 (2007).
90. Verploegen E., Hart A.J., De Volder M., Tawfick S., Chia K-K., and Cohen R.E.: Non-destructive characterization of structural hierarchy within aligned carbon nanotube assemblies. J. Appl. Phys. 109(9), 094316 (2011).
91. Pint C.L., Xu Y-Q., Pasquali M., and Hauge R.H.: Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2(9), 1871 (2008).
92. Zhong G., Warner J.H., Fouquet M., Robertson A.W., Chen B., and Robertson J.: Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4), 2893 (2012).
93. Youn S.K., Yazdani N., Patscheider J., and Park H.G.: Facile diameter control of vertically aligned, narrow single-walled carbon nanotubes. RSC Adv. 3(5), 1434 (2013).
94. Sanchez-Valencia J.R., Dienel T., Groning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., and Fasel R.: Controlled synthesis of single-chirality carbon nanotubes. Nature 512(7512), 61 (2014).
95. Esconjauregui S., Bayer B.C., Fouquet M., Wirth C.T., Ducati C., Hofmann S., and Robertson J.: Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment. Appl. Phys. Lett. 95(17), 173115 (2009).
96. Bedewy M., Farmer B., and Hart A.J.: Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. ACS Nano 8(6), 5799 (2014).
97. De Volder M., Park S., Tawfick S., and Hart A.J.: Strain-engineered manufacturing of freeform carbon nanotube microstructures. Nat. Commun. 5, 4512 (2014).
98. Futaba D.N., Hata K., Yamada T., Mizuno K., Yumura M., and Iijima S.: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 056104 (2005).
99. La Cava A.I., Bernardo C.A., and Trimm D.L.: Studies of deactivation of metals by carbon deposition. Carbon 20(3), 219 (1982).
100. Kim S.M., Pint C.L., Amama P.B., Zakharov D.N., Hauge R.H., Maruyama B., and Stach E.A.: Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett. 1(6), 918 (2010).
101. de Villoria R.G., Figueredo S.L., Hart A.J., Steiner S.A., Slocum A.H., and Wardle B.L.: High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate. Nanotechnology 20(40), 405611 (2009).
102. Yoshikawa S.N., Asari T., Kishi N., Hayashi S., Sugai T., and Shinohara H.: An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition. Nanotechnology 19(24), 245607 (2008).
103. Zhou Y., Hu L., and Grüner G.: A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88(12), 123109 (2006).
104. Ge L., Sethi S., Ci L., Ajayan P.M., and Dhinojwala A.: Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. 104(26), 10792 (2007).
105. Tawfick S., O’Brien K., and Hart A.J.: Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Small 5(21), 2467 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 68
Total number of PDF views: 279 *
Loading metrics...

Abstract views

Total abstract views: 501 *
Loading metrics...

* Views captured on Cambridge Core between 27th December 2016 - 20th January 2018. This data will be updated every 24 hours.