Skip to main content
×
×
Home

Defects in amorphous phase-change materials

  • Jennifer Luckas (a1), Daniel Krebs (a2), Stephanie Grothe (a3), Josef Klomfaß (a4), Reinhard Carius (a4), Christophe Longeaud (a5) and Matthias Wuttig (a6)...
Abstract

Understanding the physical origin of threshold switching and resistance drift phenomena is necessary for making a breakthrough in the performance of low-cost nanoscale technologies related to nonvolatile phase-change memories. Even though both phenomena of threshold switching and resistance drift are often attributed to localized states in the band gap, the distribution of defect states in amorphous phase-change materials (PCMs) has not received so far, the level of attention that it merits. This work presents an experimental study of defects in amorphous PCMs using modulated photocurrent experiments and photothermal deflection spectroscopy. This study of electrically switching alloys involving germanium (Ge), antimony (Sb) and tellurium (Te) such as amorphous germanium telluride (a-GeTe), a-Ge15Te85 and a-Ge2Sb2Te5 demonstrates that those compositions showing a high electrical threshold field also show a high defect density. This result supports a mechanism of recombination and field-induced generation driving threshold switching in amorphous chalcogenides. Furthermore, this work provides strong experimental evidence for complex trap kinetics during resistance drift. This work reports annihilation of deep states and an increase in shallow defect density accompanied by band gap widening in aged a-GeTe thin films.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: wuttig@physik-rwth-aachen.de
References
Hide All
1.Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).
2.Lee, B.S., Abelson, J.R., Bishop, S.G., Kang, D-H., Cheong, B-K., and Kim, K-B.: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).
3.Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., and Wuttig, M.: Structural transformation of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130 (2000).
4.Bruns, G., Merkelbach, P., Schlockermann, C., Salinga, M., Wuttig, M., Happ, T.D., Philipp, J.B., and Kund, M.: Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).
5.Lankhorst, M.H.R., Ketelaars, B.W.S., and Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347 (2005).
6.Wuttig, M.: Phase-change materials: Towards a universal memory? Nat. Mater. 4, 265 (2005).
7.Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968).
8.Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Shelby, R.M., Salinga, M., Jefferson, C.M., and Wuttig, M.: Characterization of phase change memory materials using phase change bridge devices. Appl. Phys. Lett. 106, 054308 (2009).
9.Boniardi, M., Redaelli, A., Pirovano, A., Tortorelli, I., and Pellizzer, F.: A physics-based model of electronic conduction decrease with time in amorphous Ge2Sb2Te5. J. Appl. Phys. 105, 084506 (2009).
10.Chen, M., Rubin, K.A., and Barton, R.W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502 (1986).
11.Luckas, J., Piarristeguy, A., Bruns, G., Jost, P., Grothe, S., Schmidt, R., Longeaud, C., and Wuttig, M., Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys. J. Appl. Phys. 113, 023704 (2013).
12.Ielmini, D. and Zhang, Y.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007).
13.Redaelli, A., Pirovano, A., Benvenuti, A. and Lacaita, A.L.: Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008).
14.Pirovano, A., Lacaita, A.L., Pellizzer, F., Kostylev, S.A., Benvenuti, A., and Bez, R.: Low-field amorphous state resistivity and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714 (2004).
15.Ielmini, D., Lavizzari, S., Sharma, D., and Lacaita, A.L.: Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 92, 193511 (2008).
16.Krebs, D., Schmidt, R.M., Klomfaß, J., Luckas, J., Bruns, G., Schlockermann, C., Salinga, M., Carius, R., and Wuttig, M.: Impact of DoS changes on resistance drift and threshold switching in amorphous phase-change materials. J. Non-Cryst. Solids 358, 2412 (2012).
17.Jackson, W.B., Amer, N.M., Boccara, A.C., and Fournier, D.: Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333 (1981).
18.Oheda, H.: Phase-shift analysis of modulated photocurrent - Its application to the determination of the energetic distribution of gap states. J. Appl. Phys. 52, 6693 (1981).
19.Brüggemann, R., Main, C., Berkin, J., and Reynolds, S.: An evaluation of phase-shift analysis of modulated photocurrents. Philos. Mag. B 62, 29 (1990).
20.Longeaud, C. and Kleider, J. P.: General-analysis of the modulated-photocurrent experiment including the contributions of holes and electrons. Phys. Rev. B 45, 11672 (1992).
21.Luckas, J., Krebs, D., Salinga, M., Wuttig, M., and Longeaud, C.: Investigation of defect states in the amorphous phase of phase change alloys GeTe and Ge2Sb2Te5. Phys. Status Solidi C 7, 852 (2010).
22.Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., and Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 15391592 (2010).
23.Luckas, J., Kremers, S., Krebs, D., Salinga, M., Wuttig, M., and Longeaud, C.: The influence of a temperature dependent band gap on the energy scale of modulated photocurrent experiments. J. Appl. Phys. 110, 013719 (2011).
24.Raoux, S., Cabrera, D., Devasia, A., Kurinec, S., Cheng, H., Zhu, Y., Breslin, C., Jordan-Sweet, J., Rettner, C.T., Burr, G.W., Salinga, M., and Wuttig, M.: Influence of dopants on the crystallization temperature, crystal structure, resistance, and threshold field for Ge2Sb2Te5 and GeTe phase change materials. E/PCOS (2011).
25.Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Salinga, M., and Wuttig, M.: Threshold field of phase change memory materials measured using phase change bridge device. Appl. Phys. Lett. 95, 082101 (2009).
26.Shportko, S., Kremers, S., Woda, M., Lencer, D., Robertson, J., and Wuttig, M.: Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653 (2008).
27.Kremers, S.: Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen. Ph.D. Thesis, RWTH University, Aachen, Germany, 2009.
28.Longeaud, C. and Tobbeche, S.: The influence of hopping on modulated photoconductivity. J. Phys. Condens. Matter. 21, 045508 (2009).
29.Shockley, W. and Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. B 87, 835 (1952).
30.Simmons, J.G. and Taylor, G.W.: Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B 4, 502 (1971).
31.Cohen, M.H., Fritzsche, H., and Ovshinsky, S.R.: Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065 (1969).
32.Kastner, M., Adler, D., and Fritzsche, H.: Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504 (1976).
33.Adler, D., Shur, M.S., Silver, M., and Ovshinsky, S.R.: Threshold switching in chalcogenide-glass thin-films. J. Appl. Phys. 51, 3289 (1980).
34.Jandieri, K., Rubel, O., Baranovski, S., Reznik, A., Rowlands, J., and Kasap, S.O: Lucky-drift model for impact ionization in amorphous semiconductors. J. Mater. Sci. Mater. Electron. 20, 221 (2008).
35.Karpov, I.V., Mitra, M., Kau, D., Spadini, G., Kryokov, Y.A., and Karpov, V.G.: Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102, 124503 (2007).
36.John, S., Soukhoulis, C., Cohen, M.H., and Economou, E.N.: Theory of electron band tails and the Urbach optical-absorption edge. Phys. Rev. Lett. 57, 1777 (1986).
37.Stuke, J.: Review of optical and electrical properties of amorphous semiconductors. J. Non-Cryst. Solids 4, 1 (1970).
38.Fantini, P., Brazzelli, S., Cazzini, E., and Mani, A.: Band gap widening with time induced by structural relaxation in Ge2Sb2Te5 films. Appl. Phys. Lett. 100, 013505 (2012).
39.Lencer, D., Salinga, M., and Wuttig, M.: Design rules for phase-change materials in data storage applications. Adv. Mater. 23, 2030 (2011).
40.Huang, B. and Robertson, J.: Bonding origin of optical contrast in phasechange memory materials. Phys Rev B 81, 081204 (2010).
41.Edwards, A.H., Pineda, A.C., Schultz, P.A., Martin, M.G., Thompson, A.P., and Hjalmarson, H.P.: Theory of persistent, p-type, metallic conduction in c-GeTe. J. Phys. Condens. Matter. 17, L329 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed