Skip to main content Accesibility Help

Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces

  • Hang Ke (a1) and Ioannis Mastorakos (a1)

The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Xue, Y., Liu, J., Chen, H., Wang, R., Li, D., Qu, J., and Dai, L.: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 51, 12124 (2012).
2.Bhaviripudi, S., Mile, E., Steiner, S.A., Zare, A.T., Dresselhaus, M.S., Belcher, A.M., and Kong, J.: CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 129, 1516 (2007).
3.Patel, A.C., Li, S., Wang, C., Zhang, W., and Wei, Y.: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231 (2007).
4.Corbin, S.F., Clemmer, R.M.C., and Yang, Q.: Development and characterization of porous composites for solid oxide fuel cell anode conduction layers using ceramic-filled highly porous Ni foam. J. Am. Ceram. Soc. 92, 331 (2009).
5.Tseng, C-J., Heush, Y-J., Chiang, C-J., Lee, Y-H., and Lee, K-R.: Application of metal foams to high temperature PEM fuel cells. Int. J. Hydrogen Energy 41, 16196 (2016).
6.Shinde, R. and Tayade, M.: Remarkable hydrogen storage on beryllium oxide clusters: First-principles calculations. J. Phys. Chem. C 118, 17200 (2014).
7.Mellouli, S., Dhaou, H., Askri, F., Jemni, A., and Ben Nasrallah, S.: Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int. J. Hydrogen Energy 34, 9393 (2009).
8.Biener, J., Nyce, G.W., Hodge, A.M., Biener, M.M., Hamza, A.V., and Maier, S.A.: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).
9.Biener, J., Hodge, A.M., and Hamza, A.V.: Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87, 121908 (2005).
10.Zhou, Q., Xie, J.Y., Wang, F., Huang, P., Xu, K.W., and Lu, T.J.: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 31, 319 (2015).
11.Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009).
12.Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).
13.Abdolrahim, N., Zbib, H.M., and Bahr, D.F.: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).
14.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).
15.Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).
16.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).
17.Shao, S. and Medyanik, S.N.: Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315 (2010).
18.Mitlin, D., Misra, A., Mitchell, T.E., Hirth, J.P., and Hoagland, R.G.: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85, 3379 (2005).
19.Shao, S. and Wang, J.: Relaxation mechanisms, structure and properties of semi-coherent interfaces. Metals 5, 1887 (2015).
20.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).
21.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).
22.Abdolrahim, N., Mastorakos, I.N., and Zbib, H.M.: Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys. Rev. B 81, 054117 (2010).
23.Li, P., Yang, Y., Luo, X., Jin, N., Liu, G., and Gao, Y.: Structural evolution of copper–silver bimetallic nanowires with core–shell structure revealed by molecular dynamics simulations. Comput. Mater. Sci. 137(Suppl. C), 289 (2017).
24.Sun, X-Y., Xu, Y., Wang, G-F., Gu, Y., and Feng, X-Q.: Effects of surface atomistic modification on mechanical properties of gold nanowires. Phys. Lett. A 379, 1893 (2015).
25.Abdolrahim, N., Bahr, D.F., Revard, B., Reilly, C., Ye, J., Balk, T.J., and Zbib, H.M.: The mechanical response of core–shell structures for nanoporous metallic materials. Philos. Mag. 93, 736 (2013).
26.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
27.Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
28.Daw, M.S., Foiles, S.M., and Baskes, M.I.: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 (1993).
29.Voter, A.F. and Chen, S.P.: Accurate interatomic potentials for Ni, Al, and Ni3Al. MRS Online Proc. Libr. 82, 175180 (1986).
30.Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).
31.Ward, L., Agrawal, A., Flores, K.M., and Windl, W.: Rapid production of accurate embedded-atom method potentials for metal alloys. ArXiv12090619 Cond-Mat Physicsphysics (2012).
32.Zimmerman, J.A., Gao, H., and Abraham, F.F.: Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8, 103 (2000).
33.Davoodi, J., Dadashi, S., and Yarifard, M.: Molecular dynamics simulations of the melting of Al–Ni nanowires. Philos. Mag. 96, 2300 (2016).
34.Divi, S. and Chatterjee, A.: Understanding segregation behavior in AuPt, NiPt, and AgAu bimetallic nanoparticles using distribution coefficients. J. Phys. Chem. C 120, 27296 (2016).
35.Zientarski, T. and Chocyk, D.: Structure and stress in Cu/Au and Fe/Au systems: A molecular dynamics study. Thin Solid Films 562(Suppl. C), 347 (2014).
36.Hirel, P.: Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212 (2015).
37.Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).
38.Faken, D. and Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).
39.Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).
40.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
41.Marian, J. and Knap, J.: Breakdown of self-similar hardening behavior in Au nanopillar microplasticity. Int. J. Multiscale Comput. Eng. 5, 287294 (2007).
42.Gan, Y. and Chen, J.K.: Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms. Appl. Phys. A 95, 357 (2009).
43.Misra, A. and Hoagland, R.G.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).
44.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).
45.Hirth, J.P. and Feng, X.: Critical layer thickness for misfit dislocation stability in multilayer structures. J. Appl. Phys. 67, 3343 (1990).
46.Mastorakos, I.N., Bellou, A., Bahr, D.F., and Zbib, H.M.: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26, 1179 (2011).
47.Chu, H.J., Wang, J., Zhou, C.Z., and Beyerlein, I.J.: Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires. Acta Mater. 59, 7114 (2011).
48.Misra, A. and Krug, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Ke and Mastorakos supplementary material
Tables SI-IV and Figures S1-S4

 Word (681 KB)
681 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed