Skip to main content

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases

  • Shunxing Liang (a1), Lixia Yin (a2), Ran Jing (a3), Xinyu Zhang (a3), Mingzhen Ma (a3) and Riping Liu (a3)...

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases including a hexagonal close-packed (hcp) structure phase were investigated. A ZrTiAlV alloy was prepared via smelting, breakdown, forging, and suitable heat treatments. X-ray diffraction results show that the proposed ZrTiAlV alloy has two ductile phase structures, namely, hcp structure α-phase and bcc (body-centered cubic) structure β-phase. Scanning electron microscopy (SEM) results show that the plastic deformation of the examined ZrTiAlV alloy starts from the α-phase. Transmission electron microscopy (TEM) analysis shows that only dislocation slips can be found near fractured areas, and the main slip plane in the α-phase is the (0001) lattice plane. Both of the SEM and TEM results show the inexistence of deformation twin in the examined ZrTiAlV alloy including a hcp structure α-phase. Reasons for the abnormal deformation behavior of the hcp structure α-phase are also discussed.

Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All
1.Zhilyaev, A.P., Sabirov, I., González-Doncel, G., Molina-Aldareguía, J., Srinivasarao, B., and Pérez-Prado, M.T.: Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater. Sci. Eng., A 528, 3496 (2011).
2.Hsu, H.C., Wu, S.C., Hsu, S.K., Sung, Y.C., and Ho, W.F.: Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Mater. Charact. 62, 157 (2011).
3.Suyalatu, , Nomura, N., Oya, K., Tanaka, Y., Kondo, R., Doi, H., Tsutsumi, Y., and Hanawa, T.: Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater. 6, 1033 (2010).
4.Han, Y., Zhang, L., Lu, J., and Zhang, W.T.: Thermal stability and corrosion resistance of nanocrystallized zirconium formed by surface mechanical attrition treatment. J. Mater. Res. 24, 3136 (2009).
5.Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., Makino, A., Fukuhara, M., and Inoue, A.: Glass-forming ability and mechanical properties of Zr75−xNi25Alx bulk glassy alloys. J. Mater. Res. 26, 533 (2011).
6.Wang, X.D., Yang, L., Jiang, J.Z., Saksl, K., Franz, H., Fecht, H-J., Liu, Y.G., and Xian, H.S.: Enhancement of plasticity in Zr-based bulk metallic glasses. J. Mater. Res. 22, 2454 (2007).
7.Liang, S.X., Ma, M.Z., Jing, R., Zhang, X.Y., and Liu, R.P.: Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys. Mater. Sci. Eng., A 532, 1 (2012).
8.Liang, S.X., Ma, M.Z., Jing, R., Zhou, Y.K., Jing, Q., and Liu, R.P.: Preparation of the ZrTiAlV alloy with ultra-high strength and good ductility. Mater. Sci. Eng., A 539, 42 (2012).
9.Liang, S.X., Ma, M.Z., Jing, R., and Liu, R.P.: Structural evolution and mechanical properties of heat treated Zr-45Ti-5Al-3V alloy. Mater. Sci. Eng., A 541, 67 (2012).
10.Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).
11.Liao, X.Z., Zhao, Y.H., Srinivasan, S.G., Zhu, Y.T., Valiev, R.Z., and Gunderou, D.V.: Deformation twining in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).
12.Hansen, N. and Ralph, B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411 (1982).
13.Johari, O. and Thomas, G.: Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metall. 12, 1153 (1964).
14.Liao, X.Z., Zhao, Y.H., Zhu, Y.T., Valiev, R.Z., and Gunderov, D.V.: Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys. 96, 636 (2004).
15.Wu, X.L., Liao, X.Z., Srinivasan, S.G., Zhou, F., Lavernia, E.J., Valiev, R.Z., and Zhu, Y.T.: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008).
16.Kaibyshev, R., Musin, F., Avtokratova, E., and Motohashi, Y.: Deformation behavior of a modified 5083 aluminum alloy. Mater. Sci. Eng., A. 392, 373 (2005).
17.Ivanisenko, Y., Kurmanaeva, L., Weissmueller, J., Yang, K., Markmann, J., Rösner, H., Scherer, T., and Fecht, H.J.: Deformation mechanisms in nanocrystalline palladium at large strains. Acta Mater. 57, 3391 (2009).
18.Nemat-Nasser, S., Guo, W.G., and Cheng, J.Y.: Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 47, 3705 (1999).
19.Stanford, N., Sotoudeh, K., and Bate, P.S.: Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31. Acta Mater. 59, 4866 (2011).
20.Dargusch, M.S., Bermingham, M.J., McDonald, S.D., and StJohn, D.H.: Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res. 25, 1695 (2010).
21.Oh, Y.M., Jeong, Y.H., Lee, K.J., and Kim, S.J.: Effect of various alloying elements on the martensitic transformation in Zr–0.8 Sn alloy. J. Alloys Compd. 307, 3 (2000).
22.Cai, S., Daymond, M.R., and Holt, R.A.: Modeling the room temperature deformation of a two-phase zirconium alloy. Acta Mater. 57, 407 (2009).
23.Manero, J.M., Gil, F.J., and Planell, J.A.: Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Mater. 48, 3353 (2000).
24.Wang, Y.B., Louie, M., Cao, Y., Liao, X.Z., Li, H.J., Ringer, S.P., and Zhu, Y.T.: High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scr. Mater. 62, 214 (2010).
25.Gurao, N.P., Kapoor, R., and Suwas, S.: Deformation behaviour of commercially pure titanium at extreme strain rates. Acta Mater. 59, 3431 (2011).
26.Mccabe, R.J., Proust, G., Cerreta, E.K., and Misra, A.: Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 25, 454 (2009).
27.Brenner, R., Béchade, J.L., Castelnau, O., and Bacroix, B.: Thermal creep of Zr–Nb1%–O alloys: Experimental analysis and micromechanical modelling. J. Nucl. Mater. 305, 175 (2002).
28.Leyens, C. and Peters, M.: Titanium and Titanium Alloys-Fundamentals and Applications, 1st ed. (betz-druck GmbH, Darmstadt, 2003).
29.Liu, J.Z.: Nuclear Structural Materials, 1st ed. (Chemical Industry Press, Beijing, 2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed