Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T09:44:56.779Z Has data issue: false hasContentIssue false

Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films

Published online by Cambridge University Press:  03 March 2011

G.R. Fox
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Thin films in the Pb-La-Ti-O (PLT) system were prepared under two different oxygen partial pressure (Po2) conditions by multi-ion-beam reactive sputtering (MIBERS). The oxidation of the depositing species was determined from the deposition rate dependence on Po2 and the Po2 dependence of the positive secondary ion emission from the sputtering targets. Films deposited at high Po2 (Po2 greater than the critical partial pressure for oxidation of the Pb target surface) were fully oxidized, and they formed the pyrochlore phase during annealing. The low Po2 conditions (Po2 less than or equal to the critical partial pressure for oxidation of the Pb target surface) caused sputtering of incompletely oxidized Pb species, and the resulting oxygen deficient films produced phase-pure perovskite. The formation of the pyrochlore phase at high Po2 and the perovskite phase at low Po2 is independent of Pb content within the film; the phase formation is dependent on the oxidation state of the Pb, which is sensitive to both the Po2 and the sputtering rate of the Pb. A perovskite/pyrochlore phase formation model (PPFM) that incorporates annealing time, temperature, and heating rate, and thin film oxygen deficiency was developed to explain the formation of the perovskite and pyrochlore phase during postdeposition annealing of PLT thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ameen, M. S., Graettinger, T. M., Rou, S. H., Al-Shareef, H. N., Gifford, K. D., Auciello, O., and Kingon, A. I., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 65.Google Scholar
2Roy, R. A., Etzold, K. F., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 77.Google Scholar
3Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).Google Scholar
4Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60 (1), 361 (1986).Google Scholar
5Krupanidhi, S. B., Hu, H., and Kumar, V., J. Appl. Phys. 71 (1), 376 (1992).Google Scholar
6Kwok, C., Desu, S. B., and Kammerdiner, L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 83.Google Scholar
7Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. XVII, 1245 (1984).Google Scholar
8Lejeune, M. and Boilot, J. P., Ceram. Int. 8, 99 (1982).Google Scholar
9Castellano, R. N., Thin Solid Films 46, 213 (1977).Google Scholar
10Castellano, R. N., IEEE Trans. Comp. Hyb. and Man. Tech. CHMT–1 (4), 397 (1978).Google Scholar
11Roth, J., in Sputtering by Particle Bombardment II, edited by Behrisch, R. (Springer-Verlag, New York, 1983), p. 91.Google Scholar
12Fox, G. R., Doctoral Thesis, The Pennsylvania State University (1992).Google Scholar
133-cm Ion Source, Commonwealth Scientific Corp., Alexandria, VA.Google Scholar
14Lead 99.999% pure, CERAC, Milwaukee, WI.Google Scholar
15Lanthanum 99.9% pure, Advent Associates, Ltd., Trafford, PA.Google Scholar
16Titanium 99.9% pure, CERAC, Milwaukee, WI.Google Scholar
17STM-100 Thickness/Rate Monitor, Sycon Instruments, East Syracuse, NY.Google Scholar
18Fox, G. R. and Krupanidhi, S. B., unpublished research.Google Scholar
19Alpha-Step 200, Tencor Instruments, Mountain View, CA.Google Scholar
20Nova Electronic Materials, Dallas, TX.Google Scholar
212-propanol, A. C. S. reagent grade, J. T. Baker, Phillipsburg, NJ.Google Scholar
22Heat-Pulse 210, AG Associates, Sunnyvale, CA.Google Scholar
23Spectraspan model Illb, Spectrometrics, Inc., Andover, MA.Google Scholar
24Cameca Camebax SX-50, Cameca Instr., Courbeoie, France.Google Scholar
25HC1 37% A. C. S. reagent grade, J. T. Baker, Phillipsburg, NJ.Google Scholar
26Hydrogen peroxide 30 wt. % solution, Aldrich Chemical Company, Inc., Milwaukee, WI.Google Scholar
27Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992).Google Scholar
28Plog, C., Wiedmann, L., and Benninghoven, A., Surf. Sci. 67, 565 (1977).CrossRefGoogle Scholar
29Wittmaack, K., Surf. Sci. 89, 668 (1979).Google Scholar
30Fox, G. R. and Krupanidhi, S. B., unpublished research.Google Scholar
31Podgornyi, I. M., Topics in Plasma Diagnostics (Plenum Press, New York, 1971), p. 22.Google Scholar
32Rossnagel, S. M., J. Vac. Sci. Technol. A 7, 1025 (1989).Google Scholar
33PAD V, diffractometer, Scintag, Santa Clara, CA.Google Scholar
344000EX Ultrahigh Resolution Transmission Electron Microscope, JEOL Ltd., Japan.Google Scholar
35Dimple Grinder, Model 656, Gatan Inc., Warrendale, PA.Google Scholar
36Dual Ion Mill, Model 600, Gatan Inc., Pleasanton, CA.Google Scholar
37Hewitt, R. W. and Winograd, N., Surf. Sci. 78, 1 (1978).Google Scholar
38Hennings, D. and Hardtl, K. H., Phys. Status Solidi A 3, 465 (1970).Google Scholar
39Fox, G. R., Krupanidhi, S. B., and More, K. L., J. Mater. Res. 8, 2191 (1993).Google Scholar
40Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 8, 2203 (1993).Google Scholar
41Fox, G. R. and Krupanidhi, S. B., J. Appl. Phys. 74 (3), 1949 (1993).Google Scholar
42Brown, H. E., Lead Oxide–Properties and Applications (International Lead Zinc Research Organization, Inc., New York, 1985), pp. 17.Google Scholar
43Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft mbH, Germany, 1989).Google Scholar
44Martin, F. W., Phys. Chem. Gasses 6 (4), 143 (1965).Google Scholar
45Hu, H., Peng, C. J., and Krupanidhi, S. B., unpublished research.Google Scholar
46Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc. 75 (11), 3091 (1992).Google Scholar
47Schwartz, R. W., Assink, R. A., and Headley, T. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 245.Google Scholar