Skip to main content Accessibility help
×
Home

Determination of elastic modulus of thin layers using nanoindentation

  • J. Menčík (a1), D. Munz (a1), E. Quandt (a1), E. R. Weppelmann (a1) and M. V. Swain (a2)...

Abstract

Elastic modulus of thin homogeneous films can be determined by indenting the specimen to various depths and extrapolating the measured (apparent) E-values to zero penetration. The paper shows the application of five approximation functions for this purpose: linear, exponential, reciprocal exponential, Gao's, and the Doerner and Nix functions. Comparison of the results for 26 film/substrate combinations has shown that the indentation response of film/substrate composites can, in general, be described by the Gao analytical function. In determining the thin film modulus from experimental data, satisfactory results can also be obtained with the exponential function, while linear function may be used only for thick films where the relative depths of penetration are small. The article explains the pertinent procedures and gives practical recommendations for the testing.

Copyright

References

Hide All
1.Nix, W. D., Metall. Trans. 20A, 22172245 (1989).
2.Schweitz, J. A., MRS Bulletin 17, 3345 (1992).
3.Pharr, G. M. and Oliver, W. C., MRS Bulletin 17, 2833 (1992).
4.Menčík, J., Mechanics of Components with Treated or Coated Surfaces (Kluwer Academic Publishers, Dordrecht, 1996).
5.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297306 (1993).
6.Menčík, J. and Swain, M. V., Materials Forum 18, 277288 (1994).
7.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).
8.Gao, H., Chiu, C. H., and Lee, J., Int. J. Solids Structures 29, 24712492 (1992).
9.Swain, M. V. and Weppelmann, E., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 177182.
10.King, R. B., Int. J. Solids Structures 23, 16571664 (1987).
11.Sneddon, I. N., Fourier Transforms (McGraw-Hill, New York, 1951), pp. 450462.
12.Schall, G., Numerische Analyse von Mikroeindruckversuchen mit kugelförmigen Prüfkörpern in dünne Keramikschichten auf Stahl mittels der Finiten Elemente (Diploma Thesis, University of Karlsruhe, 1994).
13.Menčík, J., Quandt, E., and Munz, D., Thin Solid Films 287, 208213 (1996).
14.Quandt, E., J. Alloys Comp. (1997, in press).
15.Weppelmann, E., Experimentelle Untersuchungen zum Verhalten von Randschichten keramischer Werkstoffe und Schichtsystemen unter mechanischer Beanspruchung durch Eindruckversuche. (Ph.D. Thesis, University of Karlsruhe, 1996).
16.Holleck, H. and Schier, V., Surf. Coat. Technol. 76–77, 328336 (1995).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed