Skip to main content
×
×
Home

Directionally solidified Al2O3/ZrO2 eutectic ceramic prepared with induction heating zone melting

  • Weinan Wang (a1), Juncheng Liu (a1) and Caiyu Song (a1)
Abstract

To prepare high quality large solidified Al2O3/ZrO2 eutectic ceramic, the preparation processing of the presintered ceramic as a feed rod was investigated via experiments; some parameters of the induction heating zone process were optimized via numerical modeling; an Al2O3/ZrO2 eutectic ceramic rod with a diameter 10 mm was prepared. The results show that increasing the sintering temperature could increase the presintered ceramic’s bulk density, while increasing sintering time had little effect. And the bulk density increased first and then decreased with the molding pressure increase. And the saucer coil obtained a higher temperature gradient than the tubbiness coil for a fixed crucible wall maximum temperature, and the coil turn’s increase could increase the melting zone height in the induction zone melting process. In the directionally solidified Al2O3/ZrO2 eutectic ceramics, Al2O3 phase is the matrix phase, and the ZrO2 phase embedded in the Al2O3 phase mostly with the rod shape, and little with lamellar. The hardness of directionally solidified eutectic ceramics reaches 16.17 GPa and the fracture toughness reaches 4.76 MPa m1/2, which are 1.7 times and 1.5 times of the presintered eutectic ceramic, respectively.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: jchliu@tjpu.edu.cn
References
Hide All
1.Attarian, M. and Taheri, A.K.: Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen. Mater. Sci. Eng., A 659, 104 (2016).
2.Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389, 49 (1997).
3.Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: High temperature strength and thermal stability of a unidirectionally solidified eutectic composite. J. Mater. Sci. 33, 1217 (1998).
4.Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: The creep and thermal stability characteristics of a unidirectionally solidified eutectic composite. J. Mater. Sci. 33, 4943 (1998).
5.Waku, Y., Sakata, S., Mitani, A., Shimizu, K., and Hasebe, M.: Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites. J. Mater. Sci. 37, 2975 (2002).
6.Ma, W., Zhang, J., Su, H., Ren, Q., Yao, B., and Liu, L.: Microstructure transformation from irregular eutectic to complex regular eutectic in directionally solidified Al2O3/GdAlO3/ZrO2 ceramics by laser floating zone melting. J. Eur. Ceram. Soc. 36, 1447 (2015).
7.Benamara, O., Cherif, M., Duffar, T., and Lebbou, K.: Microstructure and crystallography of Al2O3–Y3Al5O12–ZrO2, ternary eutectic oxide grown by the micro pulling down technique. J. Cryst. Growth 429, 27 (2015).
8.Liu, G., Wang, Q., Li, J., Chen, Y., and He, B.: Preparation of Al2O3–ZrO2–SiO2, ceramic composites by high-gravity combustion synthesis. Int. J. Refract. Met. Hard Mater. 41, 622 (2013).
9.Mei, L., Mai, P., Li, J., and Chen, K.: Fabrication of nanostructure Al2O3/ZrO2, (Y2O3) eutectic by combustion synthesis melt-casting under ultra-high gravity. Mater. Lett. 64, 68 (2010).
10.Fu, H., Guo, J.L., and Liu, L.: Directional Solidification and Processing of Advanced Materials (Science Press, Beijing, 2008).
11.Lu, B. and Zhang, Y.: Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics. Ceram. Int. 41, 8541 (2015).
12.Booth, F., Garrido, L., Aglietti, E., Silva, A., Pena, P., and Baudín, C.: CaZrO3–MgO structural ceramics obtained by reaction sintering of dolomite–zirconia mixtures. J. Eur. Ceram. Soc. 36, 2611 (2016).
13.Yang, H., Zhou, X., Yu, J., Wang, H., and Huang, Z.: Effect of microwave sintering time on the flexural properties of the SiC/SiC composites. Ceram. Int. 41, 14692 (2015).
14.Jerebtsov, D.A., Mikhailov, G.G., and Sverdina, S.V.: Phase diagram of the system: Al2O3–ZrO2. Ceram. Int. 26, 821 (2000).
15.Wang, P., Sun, H.B., Bai, J.H., and Liu, J.C.: Investigation on solid-liquid interface morphology during the A12O3/MgA12O4 eutectic ceramics solidification. J. Synth. Cryst. 40, 1252 (2011).
16.Mizutani, Y., Yasuda, H., Ohnaka, I., Maeda, N., and Waku, Y.: Coupled growth of unidirectionally solidified Al2O3-YAG eutectic ceramics. J. Cryst. Growth 244, 384 (2002).
17.Herring, C.: Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301 (1950).
18.Balogh, A.G.: Irradiation induced defect formation and phase transition in nanostructured ZrO2. Nucl. Instrum. Methods Phys. Res., Sect. B 282, 48 (2012).
19.Berger, M.H. and Sayir, A.: Directional solidification of Al2O3–Al2TiO5 system. J. Eur. Ceram. Soc. 28, 2411 (2008).
20.Mesa, M.C., Serrano-Zabaleta, S., Oliete, P.B., and Larrea, A.: Microstructural stability and orientation relationships of directionally solidified Al2O3–Er3Al5O12–ZrO2, eutectic ceramics up to 1600 °C. J. Eur. Ceram. Soc. 34, 2071 (2014).
21.Khasanov, O., Osipov, V., Dvilis, E., Kachaev, A., Khasanov, A., and Shitov, V.: Nanoscaled grain boundaries and pores, microstructure and mechanical properties of translucent Yb:[LuxY(1−x)O3] ceramics. J. Alloys Compd. 509, S338S342 (2011).
22.Ludwig, A. and Leibbrandt, S.: Generalized ‘Jackson–Hunt’ model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram. Mater. Sci. Eng., A S375–377, 540 (2004).
23.Akamatsu, S., Bottin-Rousseau, S., and Faivre, G.: Determination of the Jackson–Hunt constants of the In–In2Bi eutectic alloy based on in situ observation of its solidification dynamics. Acta Mater. 59, 7586 (2011).
24.Stöcker, C. and Ratke, L.: A new ‘Jackson–Hunt’ model for monotectic composite growth. J. Cryst. Growth 203, 582 (1999).
25.Barin, I. and Platzki, G.: Thermochemical Data of Pure Substances (VCH, Weinheim, 1989).
26.Gervais, M., Floch, S., Rifflet, J.C., Coutures, J., and Coutures, J.P.: Effect of the melt temperature on the solidification process of liquid garnets Ln3Al5O12 (Ln = Dy, Y, and Lu). J. Am. Ceram. Soc. 75, 3166 (1992).
27.Zheng, Y., Li, H., Zhou, T., Zhao, J., and Yang, P.: Microstructure and mechanical properties of Al2O3/ZrO2 eutectic ceramic composites prepared by explosion synthesis. J. Alloys Compd. 551, 475 (2013).
28.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).
29.Deng, Y.F., Zhang, J., Su, H.J., Song, K., Liu, L., and Fu, H.Z.: Microstructure and fracture toughness of A12O3/Er3A15O12 eutectic ceramic prepared by laser zone remelting. J. Inorg. Mater. 26, 841 (2011).
30.Sayir, A. and Farmer, S.C.: The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2(Y2O3) eutectic. Acta Mater. 48, 4691 (2000).
31.Wang, W., Liang, Z., Han, X., Chen, J., Xue, C., and Zhao, H.: Mechanical and thermodynamic properties of ZrO2, under high-pressure phase transition: A first-principles study. J. Alloys Compd. 622, 504 (2015).
32.Zhai, S.Y., Liu, J.C., and Wang, J.: Microstructure of the directionally solidified ternary eutectic ceramic Al2O3/MgAl2O4/ZrO2. Ceram. Int. 42, 8079 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 156 *
Loading metrics...

* Views captured on Cambridge Core between 15th May 2018 - 18th September 2018. This data will be updated every 24 hours.