Skip to main content
×
Home
    • Aa
    • Aa

Dislocation dynamics modeling of precipitation strengthening in Fe–Ni–Al–Cr ferritic superalloys

  • Michael J.S. Rawlings (a1) and David C. Dunand (a1)
Abstract
Abstract

Two-dimensional dislocation dynamics (DD) simulations are performed to simulate the increase in strength of ferritic superalloys strengthened by ordered β′(B2)–NiAl precipitates. Parametric studies for three precipitate volume fractions (10, 13, and 20%) and various radii (from 1 to 75 nm) predict strengthening via a mixture of precipitate bypassing and shearing by single- and super-dislocations of edge or screw character. DD strength contributions for various precipitate radii (for a 13% volume fraction) are compared to analytical models for ordered precipitate strengthening: good agreement exists in the overaged state, but not in the peak-aged and underaged states for either dislocation configurations. DD strength contributions, converted to hardness values, are compared to experimental hardness values from previously reported literature on a ferritic superalloy [Fe–10Cr–10Ni–6.5Al–3.4Mo–0.25Zr–0.005B (wt%)] aged at various temperatures and times. DD hardness values from the single-edge dislocation simulations accurately predict the experimental peak hardness, but not the under- and over-aged hardness values or trends. By incorporating the effect of secondary NiAl nanoprecipitates formed on cooling and solid solution strengthening of Fe in the primary precipitates, reasonable agreement is achieved in the overaged condition.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: michaelrawlings2015@u.northwestern.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. BhadeshiaH.K.D.H.: Design of ferritic creep-resistant steels. ISIJ Int. 41, 626 (2001).
2. StallybrassC. and SauthoffG.: Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications. Mater. Sci. Eng. A 387–389, 985 (2004).
3. StallybrassC., SchneiderA., and SauthoffG.: The strengthening effect of (Ni,Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13, 1263 (2005).
4. CalderonH.A., FineM.E., and WeertmanJ.R.: Coarsening and morphology of β′ particles in Fe–Ni–AI–Mo ferritic alloys. Analysis 19, (1988).
5. ZhuS.M., TjongS.C., and LaiJ.K.L.: Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy. Acta Mater. 46, 2969 (1998).
6. CaronP. and KhanT.: Improvement of creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater. Sci. Eng. 61, 173 (1983).
7. SuguiT., HuihuaZ., JinghuaZ., HongcaiY., and YongboX.: Formation and role of dislocation networks during high temperature creep of a single crystal nickel – base superalloy. Mater. Sci. Eng., A. 279, 160 (2000).
8. KellerR.R., MaierH.J., and MughrabiH.: Characterization of interfacial dislocation networks in a creep-deformed nickel-based superalloy. Scr. Metall. 28, 23 (1993).
9. TengZ.K., GhoshG., MillerM.K., HuangS., ClausenB., BrownD.W., and LiawP.K.: Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy. Acta Mater. 60(13–14), 5362 (2012).
10. SauthoffG.: Multiphase intermetallic alloys for structural applications. Intermetallics 8, 1101 (2000).
11. NembachE.: Particle Strengthening of Metals and Alloys, 1st ed. (Wiley-VCH, New York, NY, 1996).
12. NembachE. and NeiteG.: Precipitation hardening of superalloys by ordered γ′-particles. Prog. Mater. Sci. 29, 177 (1985).
13. Naveen KumarN., TewariR., DurgaprasadP.V., DuttaB.K., and DeyG.K.: Active slip systems in bcc iron during nanoindentation: A molecular dynamics study. Comput. Mater. Sci. 77, 260 (2013).
14. BallA. and SmallmanR.E.: The operative slip system and general plasticity of NiAl-II. Acta Metall. 14, 1517 (1966).
15. YooM.H., TakasugiT., HanadaS., and IzumiO.: Slip modes in B2-type intermetallic alloys. Mater. Trans. 31, 435 (1990).
16. ArdellA.J.: Precipitaion hardening. Metall. Trans. A 16, 2131 (1985).
17. BrownL.M. and HamR.K.: Strengthening Methods in Crystals (New York, NY, Elsevier Publishing Company, 1971).
18. MohlesV.: Simulation of dislocation glide in precipitation hardened materials. Comput. Mater. Sci. 16, 144 (1999).
19. NembachE., PesickaJ., MohlesV., BaitherD., VovkV., and KrolT.: The effects of a second aging treatment on the yield strength of γ′-hardened NIMONIC PE16-polycrystals having γ′-precipitate free zones. Acta Mater. 53, 2485 (2005).
20. MohlesV.: Computer simulations of particle strengthening: The effects of dislocation dissociation on lattice mismatch strengthening. Mater. Sci. Eng., A 321, 206 (2001).
21. MohlesV.: Simulations of dislocation glide in overaged precipitation-hardened crystals. Philos. Mag. A 81, 971 (2001).
22. MohlesV.: Computer simulations of the glide of dissociated dislocations in lattice mismatch strengthened materials. Mater. Sci. Eng., A 324, 190 (2002).
23. MohlesV. and FruhstorferB.: Computer simulations of Orowan process controlled dislocation glide in particle arrangements of various randomness. Acta Mater. 50, 2503 (2002).
24. MohlesV.: Dislocation Dynamics Simulations of Particle Strengthening. In Contin. Scale Simul. Eng. Mater. Fundam. – Microstruct. – Process Appl., edited by RaabeD., RotersF., BarlatF., and ChenL. (Wiley-VCH, New York, NY, 2004), pp. 368388.
25. BenzergaA.A., BréchetY., NeedlemanA., and Van der GiessenE.: Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 12, 557 (2004).
26. Ilker TopuzA.: Enabling microstructural changes of FCC/BCC alloys in 2D dislocation dynamics. Mater. Sci. Eng., A 627, 381 (2015).
27. AhmedN. and HartmaierA.: A two-dimensional dislocation dynamics model of the plastic deformation of polycrystalline metals. J. Mech. Phys. Solids 58, 2054 (2010).
28. LiangS., HuangM., and LiZ.: Discrete dislocation modeling on interaction between type-I blunt crack and cylindrical void in single crystals. Int. J. Solids Struct. 56–57, 209 (2015).
29. YangH., LiZ., and HuangM.: Modeling dislocation cutting the precipitate in nickel-based single crystal superalloy via the discrete dislocation dynamics with SISF dissociation scheme. Comput. Mater. Sci. 75, 52 (2013).
30. VattréA., DevincreB., and RoosA.: Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction. Intermetallics 17, 988 (2009).
31. VattréA., DevincreB., and RoosA.: Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete–continuous model simulations. Acta Mater. 58, 1938 (2010).
32. YashiroK., KuroseF., NakashimaY., KuboK., TomitaY., and ZbibH.M.: Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys. Int. J. Plast. 22, 713 (2006).
33. Hafez HaghighatS.M., EggelerG., and RaabeD.: Effect of climb on dislocation mechanisms and creep rates in γ′-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study. Acta Mater. 61, 3709 (2013).
34. LiuB., RaabeD., RotersF., and ArsenlisA.: Interfacial dislocation motion and interactions in single-crystal superalloys. Acta Mater. 79, 216 (2014).
35. CaiW., ArsenlisA., WeinbergerC., and BulatovV.: A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561 (2006).
36. PrakashA., GuénoléJ., WangJ., MüllerJ., SpieckerE., MillsM.J., PovstugarI., ChoiP., RaabeD., and BitzekE.: Atom probe informed simulations of dislocation–precipitate interactions reveal the importance of local interface curvature. Acta Mater. 92, 33 (2015).
37. MohlesV.: Superposition of dispersion strengthening and size-mismatch strengthening: Computer simulations. Philos. Mag. Lett. 83, 9 (2003).
38. MohlesV.: In Contin. Scale Simul. Eng. Mater. Fundam. – Microstruct. – Process Appl., RaabeD., RotersF., BarlatF., and ChenL., eds. (Wiley-VCH, New York, NY, 2004), pp. 368388.
39. KrugM.E., MaoZ., SeidmanD.N., and DunandD.C.: Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys. Acta Mater. 79, 382 (2014).
40. BocchiniP.: Dislocation Dynamics Simulations of Precipitation- Strengthened Ni- and Co-based Superalloys. Unpublished Manuscript. (n.d.).
41. BocchiniP.: Microstructure and Mechanical Properties in γ (f.c.c.) + γ′(L12) Precipitation-Strengthened Cobalt-Based Superalloys. PhD Thesis, Department of Materials Science and Engineering, Northwestern University, 2015.
42. LagerpuschU., MohlesV., BaitherD., AnczykowskiB., and NembachE.: Double strengthening of copper by dissolved gold-atoms and by incoherent SiO2-particls: How do the tow strengthening contributions superimpose? Acta Mater. 48, 3647 (2000).
43. LagerpuschU., MohlesV., and NembachE.: On the additivity of solid solution and dispersion strengthening. Mater. Sci. Eng., A 319–321, 176 (2001).
44. KrugM.: Microstructural Evolution and Mechanical Properties in Al-Sc Alloys With Li and Rare Earth Additions PhD thesis, Department of Materials Science and Engineering, Northwestern University, 2011.
45. TengZ.K., MillerM.K., GhoshG., LiuC.T., HuangS., RussellK.F., FineM.E., and LiawP.K.: Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scr. Mater. 63, 61 (2010).
46. TengZ.K., ZhangF., MillerM.K., LiuC.T., HuangS., ChouY.T., TienR.H., ChangY.A., and LiawP.K.: New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments. Intermetallics 29, 110 (2012).
47. SunZ., SongG., IlavskyJ., GhoshG., and LiawP.K.: Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy. Sci. Rep. 5, 16081 (2015).
48. SunZ., SongG., IlavskyJ., and LiawP.K.: Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy. Mater. Res. Lett. 3, 128 (2015).
49. MohlesV. and NembachE.: The peak- and over-aged states of particle strengthened materials: Computer simulations. Acta Mater. 49, 2405 (2001).
50. LifshitzI.M. and SlyozovV.V.: The kinetics of precipitation from supersaturated solid solution. J. Phys. Chem. Solids 19, 35 (1961).
51. WagnerC.: Theorie der alterung von niederschlagen durch umlosen (Ostwald-reifung). Z. Elektrochem. 65, 581 (1961).
52. CampanyR., LorettoM., and SmallmanR.: The determination of the 1/2〈111〉{110} antiphase boundary energy of NiAl. J. Microsc. 98, 174 (1972).
53. TengZ.K., LiuC.T., GhoshG., LiawP.K., and FineM.E.: Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature. Intermetallics 18(8), 1437 (2010).
54. SamsonovG.: Handbook of the Physicochemical Properties of the Elements: Mechanical Properties of the Elements (1968).
55. RosenhainW.: The Hardness of Solid Solutions. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 99, 196 (1921).
56. TaborD.: The physical meaning of indentation and scratch hardness. Br. J. Appl. Phys. 7, 159 (1956).
57. RosenbergJ.M. and PiehlerH.R.: Calculation of the taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall. Trans. A 2, 257 (1971).
58. HutherW. and ReppichB.: Interaction of dislocations with coherent, stree-free ordered particles. Z. Metallkd. 69, 628 (1978).
59. RaynorD. and SilcockJ.M.: Strengthening mechanisms in γ′ precipitating alloys. Mater. Sci. Technol. 4, 121 (1970).
60. ArdellA., MunjalV., and ChelmanD.: Precipitation hardening of Ni–Al alloys containing large volume fractions of gamma prime. Metall. Trans. A 7, 1263 (1976).
61. VoN.Q., LiebscherC.H., RawlingsM.J.S., AstaM., and DunandD.C.: Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy. Acta Mater. 71, 89 (2014).
62. MohlesV.: The critical resolved shear stress of single crystals with long-range ordered precipitates calculated by dislocation dynamics simulations. Mater. Sci. Eng., A 365, 144 (2004).
63. DongY., NogaretT., and CurtinW.: Scaling of dislocation strengthening by multiple obstacle types. Metall. Mater. Trans. A 41, 1954 (2010).
64. SongG., SunZ., LiL., XuX., RawlingsM.J.S., and LiebscherC.H.: Ferritic alloys with extreme creep resistance via coherent hierarchical precipitates. Sci. Rep. 5, 16327 (2015).
65. GenevoisC.: Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater. 53, 2447 (2005).
66. KhanI., StarinkM., and YanJ.: A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater. Sci. Eng., A 472, 66 (2008).
67. GilmoreD. and StarkeE.: Trace element effects on precipitation processes and mechanical properties in an Al–Cu–Li alloy. Metall. Mater. Trans. A 28, 1399 (1997).
68. NembachE.: Synergetic effects in the superposition of stregthening mechanisms. Acta Metall. 40, 3325 (1992).
69. SchanzerS. and NembachE.: The critical resolved shear stress of gamma prime-strengthened nickel-based supperalloys with volume fractions between 0.07 and 0.47. Acta Metall. 40, 803 (1992).
70. PikeL., ChangY., and LiuC.T.: Solid-Solution hardening and softening by Fe addition to NiAl. Intermetallics 5, 601 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between 26th September 2017 - 23rd October 2017. This data will be updated every 24 hours.