Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T17:46:29.663Z Has data issue: false hasContentIssue false

Distribution of visible luminescence centers in hydrogen-doped ZnO

Published online by Cambridge University Press:  23 November 2011

Laurent L.C. Lem
Affiliation:
Department of Physics and Advanced Materials, University of Technology Sydney, Broadway, New South Wales 2007, Australia
Cuong Ton-That*
Affiliation:
Department of Physics and Advanced Materials, University of Technology Sydney, Broadway, New South Wales 2007, Australia
Matthew R. Phillips
Affiliation:
Department of Physics and Advanced Materials, University of Technology Sydney, Broadway, New South Wales 2007, Australia
*
a)Address all correspondence to this author. e-mail: Cuong.Ton-That@uts.edu.au
Get access

Abstract

ZnO crystals have been investigated by scanning cathodoluminescence microscopy and spectroscopy at 80 K following hydrogen incorporation by plasma exposure. The intensity of the ZnO near-band-edge (NBE) emission is greatly enhanced while the defect-related green emission is quenched following plasma treatment. These effects are attributed to the passivation of zinc vacancies by hydrogen. The green and yellow intensities and their intensity ratios to the NBE vary with excitation depth for both undoped and H-doped ZnO crystals. The intensities of the green and yellow emissions exhibit sublinear dependencies on electron beam excitation density while the NBE intensity increases linearly with the excitation density. These saturation effects with increasing excitation density must be taken into account when assessing defects in ZnO by luminescence characterization.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).CrossRefGoogle Scholar
2.Strzhemechny, Y.M., Mosbacker, H.L., Look, D.C., Reynolds, D.C., Litton, C.W., Garces, N.Y., Giles, N.C., Halliburton, L.E., Niki, S., and Brillson, L.J.: Remote hydrogen plasma doping of single crystal ZnO. Appl. Phys. Lett. 84, 2545 (2004).CrossRefGoogle Scholar
3.Strzhemechny, Y.M., Nemergut, J., Smith, P.E., Bae, J., Look, D.C., and Brillson, L.J.: Remote hydrogen plasma processing of ZnO single crystal surfaces. J. Appl. Phys. 94, 4256 (2003).CrossRefGoogle Scholar
4.Ip, K., Overberg, M.E., Heo, Y.W., Norton, D.P., Pearton, S.J., Stutz, C.E., Kucheyev, S.O., Jagadish, C., Williams, J.S., Luo, B., Ren, F., Look, D.C., and Zavada, J.M.: Hydrogen incorporation, diffusivity and evolution in bulk ZnO. Solid-State Electron. 47, 2255 (2003).CrossRefGoogle Scholar
5.Jagadish, C. and Pearton, S.J.: Zinc Oxide bulk, thin films and nanostructures: Processing, properties and applications (Elsevier, New York, 2006).Google Scholar
6. Sekiguchi, T., Ohashi, N., and Terada, Y.: Effect of hydrogenation on ZnO luminescence. Jpn. J. Appl. Phys. 36, L289 (1997).CrossRefGoogle Scholar
7.Ohashi, N., Ishigaki, T., Okada, N., Sekiguchi, T., Sakaguchi, I., and Haneda, H.: Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO. Appl. Phys. Lett. 80, 2869 (2002).CrossRefGoogle Scholar
8.Janotti, A. and Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).CrossRefGoogle Scholar
9.Ton-That, C., Phillips, M.R., Foley, M., Moody, S.J., and Stampfl, A.P.J.: Surface electronic properties of ZnO nanoparticles. Appl. Phys. Lett. 92, 261916 (2008).CrossRefGoogle Scholar
10.Nayak, J., Kimura, S., Nozaki, S., Ono, H., and Uchida, K.: Yellowish-white photoluminescence from ZnO nanoparticles doped with Al and Li. Superlattices Microstruct. 42, 438 (2007).CrossRefGoogle Scholar
11.Yacobi, B.G. and Holt, D.B.: Cathodoluminescence microscopy of inorganic solids (Plenum, New York, 1990).CrossRefGoogle Scholar
12.Davidson, S.M. and Dimitriadis, C.A.: Advances in the electrical assessment of semiconductors using the scanning electron microscope. J. Microsc. 118, 275 (1980).CrossRefGoogle Scholar
13.Phillips, M.R., Gelhausen, O., and Goldys, E.M.: Cathodoluminescence properties of zinc oxide nanoparticles. Phys. Status Solidi A 201, 229 (2004).CrossRefGoogle Scholar
14.Wang, L.J. and Giles, N.C.: Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J. Appl. Phys. 94, 973 (2003).CrossRefGoogle Scholar
15.Borseth, T.M., Svensson, B.G., Kuznetsov, A.Y., Klason, P., Zhao, Q.X., and Willander, M.: Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006).CrossRefGoogle Scholar
16.Sekiguchi, T., Miyashita, S., Obara, K., Shishido, T., and Sakagami, N.: Hydrothermal growth of ZnO single crystals and their optical characterization. J. Cryst. Growth 214, 72 (2000).CrossRefGoogle Scholar
17.Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., and Gnade, B.E.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
18.Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R.: CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92 (2007).CrossRefGoogle ScholarPubMed
19.Nadarajah, A. and Konenkamp, R.: Laser annealing of photoluminescent ZnO nanorods grown at low temperature. Nanotechnology 22, 025205 (2011).CrossRefGoogle ScholarPubMed
20.Mass, J., Avella, M., Jimenez, J., Callahan, M., Grant, E., Rakes, K., Bliss, D., and Wang, B.G.: Cathodoluminescence characterization of hydrothermal ZnO crystals. Superlattices Microstruct. 38, 223 (2005).CrossRefGoogle Scholar
21.Prades, J.D., Cirera, A., Morante, J.R., and Comet, A.: Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films 515, 8670 (2007).CrossRefGoogle Scholar
22.Lavrov, E.V., Weber, J., Borrnert, F., Van de Walle, C.G., and Helbig, R.: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002).CrossRefGoogle Scholar
23.Kucheyev, S.O., Toth, M., Phillips, M.R., Williams, J.S., and Jagadish, C.: Effects of excitation density on cathodoluminescence from GaN. Appl. Phys. Lett. 79, 2154 (2001).CrossRefGoogle Scholar