Skip to main content
×
×
Home

Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature

  • Titta Aaltonen (a1), Mikko Ritala (a1), Yung-Liang Tung (a2), Yun Chi (a2), Kai Arstila (a3), Kristoffer Meinander (a3) and Markku Leskelä (a1)...
Abstract

The low limit of the deposition temperature for atomic layer deposition (ALD) of noble metals has been studied. Two approaches were taken; using pure oxygen instead of air and using a noble metal starting surface instead of Al2O3. Platinum thin films were obtained by ALD from MeCpPtMe3 and pure oxygen at deposition temperature as low as 200 °C, which is significantly lower than the low-temperature limit of300 °C previously reported for the platinum ALD process in which air was used as the oxygen source. The platinum films grown in this study had smooth surfaces, adhered well to the substrate, and had low impurity contents. ALD of ruthenium, on the other hand, took place at lower deposition temperatures on an iridium seed layer than on an Al2O3 layer. On iridium surface, ruthenium films were obtained from RuCp2 and oxygen at 225 °C and from Ru(thd)3 and oxygen at 250 °C, whereas no films were obtained on Al2O3 at temperatures lower than 275 and 325 °C, respectively. The crystal orientation of the ruthenium films was found to depend on the precursor. ALD of palladium from a palladium β-ketoiminate precursor and oxygen at 250 and 275 °C was also studied. However, the film-growth rate did not saturate to a constant level when the precursor pulse times were increased.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: titta.aaltonen@helsinki.fi
References
Hide All
1Hwang, C.S.: (Ba,Sr)TiO3 thin films for ultra large scale dynamic random-access memory. A review on the process integration. Mater. Sci. Eng. B 56, 178 (1998).
2Tsai, M.S., Sun, S.C. and Tseng, T-Y.: Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba,Sr)TiO3 capacitors. IEEE Trans. Electron Devices 46, 1829 (1999).
3Johnson, J.A., Lisoni, J.G. and Wouters, D.J.: Developing a conductive oxygen barrier for ferroelectric integration. Microelectron. Eng. 70, 377 (2003).
4Bandaru, J., Sands, T. and Tsakalakos, L.: Simple Ru electrode scheme for ferroelectric (Pb,La)(Zr,Ti)O3 capacitors directly on silicon. J. Appl. Phys. 84, 1121 (1998).
5Pawlak, M.A., Schram, T., Maex, K. and Vantomme, A.: Investigation of iridium as a gate electrode for deep sub-micron CMOS technology. Microelectron. Eng. 70, 373 (2003).
6Papadatos, F., Skordas, S., Consiglio, S., Kaloyeros, A.E. and Eisenbraun, E.: Characterization of ruthenium and ruthenium oxide thin films deposited by chemical vapor deposition for CMOS gate electrode applications, in Novel Materials and Processes for Advanced CMOS, edited by Gardner, M.I., De Gendt, S., Maria, J-P., and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 745 Warrendale, PA, 2003) p. 61
7Choi, K-J. and Yoon, S-G.: Characteristics of Pt and TaN metal gate electrode for high-κ hafnium oxide gate dielectrics. Electrochem. Solid-State Lett. 7, G47 (2004).
8Josell, D., Wheeler, D., Witt, C. and Moffat, T.P.: Seedless superfill: Copper electrodeposition in trenches with ruthenium barriers. Electrochem. Solid-State Lett. 6, C143 (2003).
9Wang, Z., Yaegashi, O., Sakaue, H., Takahagi, T. and Shingubara, S.: Highly adhesive electroless Cu layer formation using an ultra thin ionized cluster beam (ICB)-Pd catalytic layer for sub-100 nm Cu interconnections. Jpn. J. Appl. Phys. 42, L1223 (2003).
10Kim, J.J., Kim, S-K. and Kim, Y.S.: Direct plating of low resistivity bright Cu film onto TiN barrier layer via Pd activation. J. Electrochem. Soc. 151, C97 (2004).
11Garcia, J.R.V. and Goto, T.: Chemical vapor deposition of iridium, platinum, rhodium, and palladium. Mater. Trans. 44, 1717 (2003).
12Ritala, M. and Leskelä, M. in Handbook of Thin Film Materials, edited by Nalwa, H.S. (Academic Press, San Diego, CA, 2001) p. 103.
13Ritala, M., Leskelä, M., Dekker, J-P., Mutsaers, C., Soininen, P.J. and Skarp, J.: Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition. Chem. Vap. Deposition 5, 7 (1999).
14Elers, K-E., Saanila, V., Soininen, P.J., Li, W-M., Kostamo, J.T., Haukka, S., Juhanoja, J. and Besling, W.F.A.: Diffusion barrier deposition on a copper surface by atomic layer deposition. Chem. Vap. Deposition 8, 149 (2002).
15Aaltonen, T., Alén, P., Ritala, M. and Leskelä, M.: Ruthenium thin films grown by atomic layer deposition. Chem. Vap. Deposition 9, 45 (2003).
16Aaltonen, T., Ritala, M., Arstila, K., Keinonen, J. and Leskelä, M.: Atomic layer deposition of ruthenium thin films from Ru(thd)3 and oxygen. Chem. Vap. Deposition 10, 215 (2004).
17Yoon, D-S. and Roh, J.S.: Thin Pt layer insertion into the Ru bottom electrode: Effects on the surface morphology of a (Ba, Sr) TiO3 dielectric film and on the performance of the TiN barrier in the Pt/Ru/TiN/p-Si/Si heterostructure. Semicond. Sci. Technol. 17, 1048 (2002).
18Aaltonen, T., Ritala, M., Sammelselg, V. and Leskelä, M.: Atomic layer deposition of iridium thin films. J. Electrochem. Soc. 151, G489 (2004).
19Kaloyeros, A.E. and Eisenbraun, E.: Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu. Rev. Mater. Sci. 30, 363 (2000).
20Min, Y-S., Bae, E.J., Jeong, K.S., Cho, Y.J., Lee, J-H., Choi, W.B. and Park, G-S.: Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater. 15, 1019 (2003).
21Kwon, O-K., Kim, J-H., Park, H-S. and Kang, S-W.: Atomic layer deposition of ruthenium thin films for copper glue layer. J. Electrochem. Soc. 151, G109 (2004).
22Kwon, O-K., Kwon, S-H., Park, H-S. and Kang, S-W.: Plasma-enhanced atomic layer deposition of ruthenium thin films. Electrochem. Solid-State Lett. 7, C46 (2004).
23Aaltonen, T., Ritala, M., Sajavaara, T., Keinonen, J. and Leskelä, M.: Atomic layer deposition of platinum thin films. Chem. Mater. 15, 1924 (2003).
24Senkevich, J.J., Tang, F., Rogers, D., Drotar, J.T., Jezewski, C., Lanford, W.A., Wang, G-C. and Lu, T-M.: Substrate-independent palladium atomic layer deposition. Chem. Vap. Deposition 9, 258 (2003).
25Aaltonen, T., Rahtu, A., Ritala, M. and Leskelä, M.: Reaction mechanism studies on atomic layer deposition of ruthenium and platinum. Electrochem. Solid-State Lett. 6, C130 (2003).
26Aarik, J., Aidla, A., Jaek, A., Kiisler, A-A. and Tammik, A-A.: Properties of amorphous Al2O3 films grown by ALE. Acta Polytechn. Scand. Chem. Technol. Metall. Ser. 195, 201 (1990).
27Liu, Y-H., Cheng, Y-C., Tung, Y-L., Chi, Y., Chen, Y-L., Liu, C-S., Peng, S-M. and Lee, G-H.: Synthesis and characterization of fluorinated β-ketoiminate and imino-alcoholate Pd complexes: Precursors for palladium chemical vapor deposition. J. Mater. Chem. 13, 135 (2003).
28Waldo, R.A.: An iteration procedure to calculate film compositions and thicknesses in electron-probe microanalysis. Microbeam Anal. 23, 310 (1988).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 169 *
Loading metrics...

Abstract views

Total abstract views: 625 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2018. This data will be updated every 24 hours.